18,085 research outputs found
Chaotic string-capture by black hole
We consider a macroscopic charge-current carrying (cosmic) string in the
background of a Schwarzschild black hole. The string is taken to be circular
and is allowed to oscillate and to propagate in the direction perpendicular to
its plane (that is parallel to the equatorial plane of the black hole).
Nurmerical investigations indicate that the system is non-integrable, but the
interaction with the gravitational field of the black hole anyway gives rise to
various qualitatively simple processes like "adiabatic capture" and "string
transmutation".Comment: 13 pages Latex + 3 figures (not included), Nordita 93/55
Null Strings in Schwarzschild Spacetime
The null string equations of motion and constraints in the Schwarzschild
spacetime are given. The solutions are those of the null geodesics of General
Relativity appended by a null string constraint in which the "constants of
motion" depend on the world-sheet spatial coordinate. Because of the extended
nature of a string, the physical interpretation of the solutions is completely
different from the point particle case. In particular, a null string is
generally not propagating in a plane through the origin, although each of its
individual points is. Some special solutions are obtained and their physical
interpretation is given. Especially, the solution for a null string with a
constant radial coordinate moving vertically from the south pole to the
north pole around the photon sphere, is presented. A general discussion of
classical null/tensile strings as compared to massless/massive particles is
given. For instance, tensile circular solutions with a constant radial
coordinate do not exist at all. The results are discussed in relation to
the previous literature on the subject.Comment: 16 pages, REVTEX, no figure
A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios
We re-analyse the kinematics of the system of blue horizontal branch field
(BHBF) stars in the Galactic halo (in particular the outer halo), fitting the
kinematics with the model of radial and tangential velocity dispersions in the
halo as a function of galactocentric distance r proposed by Sommer-Larsen,
Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF
stars. The basic result is that the character of the stellar halo velocity
ellipsoid changes markedly from radial anisotropy at the sun to tangential
anisotropy in the outer parts of the Galactic halo (r greater than approx 20
kpc). Specifically, the radial component of the stellar halo's velocity
ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/-
10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The
rapid decrease in the radial velocity dispersion is matched by an increase in
the tangential velocity dispersion, with increasing r.
Our results may indicate that the Galaxy formed hierarchically (partly or
fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation
scenario, which for quite a while has been favoured by most theorists and
recently also has been given some observational credibility by HST observations
of a potential group of small galaxies, at high redshift, possibly in the
process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical
Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm
Young and intermediate-age massive star clusters
An overview of our current understanding of the formation and evolution of
star clusters is given, with main emphasis on high-mass clusters. Clusters form
deeply embedded within dense clouds of molecular gas. Left-over gas is cleared
within a few million years and, depending on the efficiency of star formation,
the clusters may disperse almost immediately or remain gravitationally bound.
Current evidence suggests that a few percent of star formation occurs in
clusters that remain bound, although it is not yet clear if this fraction is
truly universal. Internal two-body relaxation and external shocks will lead to
further, gradual dissolution on timescales of up to a few hundred million years
for low-mass open clusters in the Milky Way, while the most massive clusters (>
10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe.
The low-mass end of the initial cluster mass function is well approximated by a
power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that
quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5
Msun. In starburst galaxies and old globular cluster systems, this limit
appears to be higher, at least several x 10^6 Msun. The difference is likely
related to the higher gas densities and pressures in starburst galaxies, which
allow denser, more massive giant molecular clouds to form. Low-mass clusters
may thus trace star formation quite universally, while the more long-lived,
massive clusters appear to form preferentially in the context of violent star
formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special
issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of
galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed.
PDFLaTeX, requires rspublic.cls style fil
Exact String Solutions in Nontrivial Backgrounds
We show how the classical string dynamics in -dimensional gravity
background can be reduced to the dynamics of a massless particle constrained on
a certain surface whenever there exists at least one Killing vector for the
background metric. We obtain a number of sufficient conditions, which ensure
the existence of exact solutions to the equations of motion and constraints.
These results are extended to include the Kalb-Ramond background. The
-brane dynamics is also analyzed and exact solutions are found. Finally, we
illustrate our considerations with several examples in different dimensions.
All this also applies to the tensionless strings.Comment: 22 pages, LaTeX, no figures; V2:Comments and references added;
V3:Discussion on the properties of the obtained solutions extended, a
reference and acknowledgment added; V4:The references renumbered, to appear
in Phys Rev.
From p-branes to Cosmology
We study the relationship between static p-brane solitons and cosmological
solutions of string theory or M-theory. We discuss two different ways in which
extremal p-branes can be generalised to non-extremal ones, and show how wide
classes of recently discussed cosmological models can be mapped into
non-extremal p-brane solutions of one of these two kinds. We also extend
previous discussions of cosmological solutions to include some that make use of
cosmological-type terms in the effective action that can arise from the
generalised dimensional reduction of string theory or M-theory.Comment: Latex, 24 pages, no figur
Stable and Unstable Circular Strings in Inflationary Universes
It was shown by Garriga and Vilenkin that the circular shape of nucleated
cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense
that the ratio of the mean fluctuation amplitude to the loop radius is
constant. This result can be generalized to all expanding strings (of non-zero
loop-energy) in de Sitter space. In other curved spacetimes the situation,
however, may be different.
In this paper we develop a general formalism treating fluctuations around
circular strings embedded in arbitrary spatially flat FRW spacetimes. As
examples we consider Minkowski space, de Sitter space and power law expanding
universes. In the special case of power law inflation we find that in certain
cases the fluctuations grow much slower that the radius of the underlying
unperturbed circular string. The inflation of the universe thus tends to wash
out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-
Circular String-Instabilities in Curved Spacetime
We investigate the connection between curved spacetime and the emergence of
string-instabilities, following the approach developed by Loust\'{o} and
S\'{a}nchez for de Sitter and black hole spacetimes. We analyse the linearised
equations determining the comoving physical (transverse) perturbations on
circular strings embedded in Schwarzschild, Reissner-Nordstr\"{o}m and de
Sitter backgrounds. In all 3 cases we find that the "radial" perturbations grow
infinitely for (ring-collapse), while the "angular"
perturbations are bounded in this limit. For we find that
the perturbations in both physical directions (perpendicular to the string
world-sheet in 4 dimensions) blow up in the case of de Sitter space. This
confirms results recently obtained by Loust\'{o} and S\'{a}nchez who considered
perturbations around the string center of mass.Comment: 24 pages Latex + 2 figures (not included). Observatoire de Paris,
Meudon No. 9305
Hole Spin Coherence in a Ge/Si Heterostructure Nanowire
Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si
nanowire double quantum dot using a fast pulsed-gate method and dispersive
readout. An inhomogeneous dephasing time
exceeds corresponding measurements in III-V semiconductors by more than an
order of magnitude, as expected for predominately nuclear-spin-free materials.
Dephasing is observed to be exponential in time, indicating the presence of a
broadband noise source, rather than Gaussian, previously seen in systems with
nuclear-spin-dominated dephasing.Comment: 15 pages, 4 figure
Oil and macroeconomic (in)stability
We analyze the role of oil price volatility in reducing U.S. macroeconomic instability. Using a regime-switching structural model we
revisit the timing of the Great Moderation and the sources of changes
in the volatility of macroeconomic variables. We find that smaller or
fewer oil price shocks did not play a major role in explaining the Great
Moderation. Instead oil price shocks are recurrent sources of macroeconomic
fluctuations. The most important factor reducing macroeconomic variability is a decline in the volatility of other structural shocks
(demand and supply). A change to a more responsive monetary policy
regime also played a role
- …