206 research outputs found

    Fremtidens skovbrug i Danmark

    Get PDF

    Neuronal precursor cell proliferation in the hippocampus after transient cerebral ischemia: a comparative study of two rat strains using stereological tools

    Get PDF
    BACKGROUND: We are currently investigating microglial activation and neuronal precursor cell (NPC) proliferation after transient middle cerebral artery occlusion (tMCAo) in rats. This study aimed: (1) to investigate differences in hippocampal NPC proliferation in outbred male spontaneously hypertensive rats (SHRs) and Sprague-Dawley rats (SDs) one week after tMCAo; (2) to present the practical use of the optical fractionator and 2D nucleator in stereological brain tissue analyses; and (3) to report our experiences with an intraluminal tMCAo model where the occluding filament is advanced 22 mm beyond the carotid bifurcation and the common carotid artery is clamped during tMCAo. METHODS: Twenty-three SDs and twenty SHRs were randomized into four groups subjected to 90 minutes tMCAo or sham. BrdU (50 mg/kg) was administered intraperitoneally twice daily on Day 4 to 7 after surgery. On Day 8 all animals were euthanized. NeuN-stained tissue sections were used for brain and infarct volume estimation with the 2D nucleator and Cavalieri principle. Brains were studied for the presence of activated microglia (ED-1) and hippocampal BrdU incorporation using the optical fractionator. RESULTS: We found no significant difference or increase in post-ischemic NPC proliferation between the two strains. However, the response to remote ischemia may differ between SDs and SHRs. In three animals increased post-stroke NPC proliferation was associated with hippocampal ischemic injury. The mean infarct volume was 89.2 ± 76.1 mm(3 )in SHRs and 16.9 ± 22.7 mm(3 )in SDs (p < 0.005). Eight out of eleven SHRs had ischemic neocortical damage in contrast to only one out of 12 SDs. We observed involvement of the anterior choroidal and hypothalamic arteries in several animals from both strains and the anterior cerebral artery in two SHRs. CONCLUSIONS: We found no evidence of an early hippocampal NPC proliferation one week after tMCAo in both strains. Infarction within the anterior choroidal artery could induce hippocampal ischemia and increase NPC proliferation profoundly. NPC proliferation was not aggravated by the presence of activated microglia. Intraluminal tMCAo in SHRs gave a more reliable infarct with neocortical involvement, but affected territories supplied by the anterior cerebral, anterior choroidal and hypothalamic arteries

    Transverse Momentum Spectra in Au+Au and d+Au Collisions at sNN\sqrt{s_{NN}}=200 GeV and the Pseudorapidity Dependence of High pT_T Suppression

    Full text link
    We present spectra of charged hadrons from Au+Au and d+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV measured with the BRAHMS experiment at RHIC. The spectra for different collision centralities are compared to spectra from p+pˉ{\rm p}+\bar{{\rm p}} collisions at the same energy scaled by the number of binary collisions. The resulting ratios (nuclear modification factors) for central Au+Au collisions at η=0\eta=0 and η=2.2\eta=2.2 evidence a strong suppression in the high pTp_{T} region (>>2 GeV/c). In contrast, the d+Au nuclear modification factor (at η=0\eta=0) exhibits an enhancement of the high pTp_T yields. These measurements indicate a high energy loss of the high pTp_T particles in the medium created in the central Au+Au collisions. The lack of suppression in d+Au collisions makes it unlikely that initial state effects can explain the suppression in the central Au+Au collisions.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Localized atomic basis set in the projector augmented wave method

    Get PDF
    We present an implementation of localized atomic orbital basis sets in the projector augmented wave (PAW) formalism within the density functional theory (DFT). The implementation in the real-space GPAW code provides a complementary basis set to the accurate but computationally more demanding grid representation. The possibility to switch seamlessly between the two representations implies that simulations employing the local basis can be fine tuned at the end of the calculation by switching to the grid, thereby combining the strength of the two representations for optimal performance. The implementation is tested by calculating atomization energies and equilibrium bulk properties of a variety of molecules and solids, comparing to the grid results. Finally, it is demonstrated how a grid-quality structure optimization can be performed with significantly reduced computational effort by switching between the grid and basis representations.Comment: 10 pages, 5 figures. http://prb.aps.org.globalproxy.cvt.dk/abstract/PRB/v80/i19/e19511

    Rapidity Dependence of Charged Antiparticle-to-Particle Ratios in Au+Au Collisions at sNN=200\sqrt{s_{NN}}=200 GeV

    Full text link
    We present ratios of the numbers of charged antiparticles to particles (pions, kaons and protons) in Au + Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV as a function of rapidity in the range yy=0-3. While the particle ratios at midrapidity are approaching unity, the K/K+K^-/K^+ and pˉ/p\bar{p}/p ratios decrease significantly at forward rapidities. An interpretation of the results within the statistical model indicates a reduction of the baryon chemical potential from μB130\mu_B \approx 130MeV at yy=3 to μB25\mu_B \approx 25MeV at yy=0.Comment: 4 pages, 4 figure
    corecore