28 research outputs found

    A DNA-binding bromodomain-containing protein interacts with and reduces Rx1-mediated immune response to Potato Virus X

    Get PDF
    Plant NLR proteins enable the immune system to recognise and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming. Some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato binds and distorts double-stranded DNA. However, the components of the chromatin localized Rx1-complex are largely unknown. Here we report a physical and functional interaction between Rx1 and NbDBCP, a bromodomain-containing chromatin-interacting protein. NbDBCP accumulates in the nucleolus, interacts with chromatin and redistributes Rx1 to the nucleolus in a subpopulation of imaged cells. Rx1 over-expression reduces NbDBCP interactions with chromatin. NbDBCP is a negative regulator of Rx1-mediated immune responses to potato virus X (PVX) and this activity requires an intact bromodomain. Previously, Rx1 has been shown to regulate the DNA-binding activity of a Golden2-like transcription factor, NbGlk1. Rx1 and NbDBCP act synergistically to reduce NbGlk1 DNA-binding suggesting a mode of action for NbDBCP’s inhibitory effect on immunity. This study provides new mechanistic insight into how a chromatin localised NLR complex co-ordinates immune signalling following pathogen perception

    The Potato Nucleotide-Binding Leucine-Rich Repeat (NLR) Immune Receptor Rx1 is a Pathogen Dependent DNA-Deforming Protein

    Get PDF
    Plant NLR proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus, however, conserved nuclear targets that support their role in immunity are unknown. Previously we noted a structural homology between the NB domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA-binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger a Rx1-DNA interaction. DNA-binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signalling and defines DNA as a molecular target of an activated NLR

    Modulated Fluorescence in LB Films Based on DADQs—A Potential Sensing Surface?

    Get PDF
    Novel fluorescent Langmuir-Blodgett (LB) films have been constructed from three different amphiphilic dicynaoquinodimethanes (DADQs). The DADQs varied in functional group structure, which had an impact on the LB film structure and the fluorescence properties. As the fluorescence of DADQs competes with non-radiative decay (conformational change), the packing and/or free volume in the LB film will influence the average fluorescence lifetime and integrated intensity. The pristine (blank) LB films were then exposed to a selection of non-fluorescent target analytes (some with environmental relevance) and the fluorescence was measured and analyzed relative to the pristine LB film. Exposure of the LB films to selected target analytes results in a modulation of the fluorescence, both with respect to average fluorescence lifetime and integrated intensity. The modulation of the fluorescence is different for different DADQ LB films and can be attributed to restricted non-radiative decays or charge transfer reactions between target analyte and DADQ LB film. The response from the DADQ LB films shows that these systems can be developed into sensing surfaces based on fluorescence measurements

    Almost complete radiationless energy transfer from excited triplet state of a dim phosphor to a covalently linked adjacent fluorescent dye in purely organic tandem luminophores doped into PVA matrix

    Get PDF
    In solid PVA matrix some thiophene- and selenophene-comprising heteroaromatic compounds reveal moderate room temperature phosphorescence with emission peaks between 550 and 600 nm and possessing lifetime in millisecond range upon excitation with near-UV radiation. In tandem luminophores almost complete intramolecular interchromophore energy transfer takes place by FRET mechanism from the named phosphors in excited triplet state to adjacent covalently linked fluorescent dyes, leading to emission of light from the fluorophore. Variation of length of the linker connecting the chromophores enables tuning of luminescence lifetime in the range from 5 ms to 100 ÎŒs. The delayed emission spectrum of the tandem luminophores originates from the acceptor fluorophore. Triplet–singlet energy transfer outperforms other relaxation pathways of the excited triplet state even at 75 °C, making the luminescence lifetime temperature independent. Thus a universal strategy is provided for converting inherently dim organic phosphors into bright long-lifetime luminescence emitters. This discovery may open new avenues for construction of efficient purely organic light emitting devices and photoluminescent sensors for measurement of various analyte

    In Vitro and in Cellulo Sensing of Transition Metals Using Time-Resolved Fluorescence Spectroscopy and Microscopy

    Get PDF
    In this work we demonstrate that time domain techniques can be used successfully to monitor realtively weak modulations of the fluorescence in sensing applications. The metal sensing complex Newport Green DCFℱ can detect selected transition metals in vivo as well as in vitro. Incremental addition of Ni and/or Zn (in vitro) lead to a substantial reduction in the yield of the fast component in a bi-exponential fluorescence decay (τ1 = 150–250 ps) from 60% to 30–35%. This is rationalised as an inhibition of intra-molecular electron transfer in the NPG sensing complex due to metal complexation. In order to explore this effect in cellulo, NIH 3 T3 mouse skin fibroplast cells were pre-incubated with set levels of Ni and Zn, at a constant concentration of NPG. The fluorescence modulation in cellullo was subsequently studied employing both time-resolved fluorescence microscopy and confocal fluorescence microscopy. In correlation with the in vitro observations, similar effects were observed on the fluorescence decay in cellulo

    Ultrafast chlorophyll b-chlorophyll a excitation energy transfer in the isolated light harvesting complex, LHC II, of green plants Implications for the organisation of chlorophylls

    Get PDF
    AbstractThe excitation energy transfer between chlorophyll b (Chl b) and chlorophyll a (Chl a) in the isolated trimeric chlorophyll-a/b-binding protein complex of spinach photosystem 2 (LHC II) has been studied by femtosecond spectroscopy. In the main absorption band of Chl b the ground state recovery consists of two components of 0.5 ps and 2.0 ps, respectively. Also in the Chl a absorption band, at 665 nm, the ground state recovery is essentially bi-exponential. In this case is, however, the fastest relaxation lifetime is a 2.0 ps component followed by a slower component with a lifetime in the order of 10–20 ps. In the Chl b absorption band a more or less constant anisotropy of r = 0.2 was observed during the 3 ps the system was monitored. In the Chl a absorption band there was, however, a relaxation of the anisiotropy from r = 0.3 to a quasi steady state level of r = 0.18 in about 1 ps. Since the 0.5 ps component is only seen upon selective excitation of Chl b we assign this component to the energy transfer between Chl b and Chl a. The other components most likely represents redistribution processes of energy among spectrally different forms of Chl a. The energy transfer process between Chl b and Chl a can well be explained by the Förster mechanism which also gives a calculated distance of 13 Å between interacting chromophores. The organisation of chlorophylls in LHC II is discussed in view of the recent crystal structure data (1991) Nature 350, 130]

    Rapid Time-Resolved Circular Polarization Luminescence (CPL) Emission Spectroscopy

    Get PDF
    Circular polarisation luminescence (CPL) emission spectroscopy is a powerful tool for probing the fundamental chiroptical features of optically emissive chiral molecular systems. However, uptake of CPL spectroscopy has been impeded by the limitations of conventional scanning monochromator (SM) CPL spectrometers, which are costly to acquire and maintain, and typically require tens of minutes to acquire a typical CPL spectrum. Here, we demonstrate a design of CPL spectrometer which uses rapid readout solid state (SS) spectrometer detectors and a dual channel optical layout to acquire CPL spectra in as little as 10 milliseconds. We validate and demonstrate equivalent CPL measurement by measuring CPL spectra of two reference europium(III) complexes. Further, we demonstrate time-gated CPL acquisition, enabling long-lived CPL luminescence to be distinguished from short-lived emission of other fluorescent species. We anticipate that SS-CPL spectrometers will enable flexible, rapid, and relatively low-cost CPL spectroscopy for diverse applications

    Induced circularly polarized luminescence arising from anion or protein binding to racemic emissive lanthanide complexes

    Get PDF
    A circularly polarized luminescence (CPL) spectrometer has been built and used to study the binding interaction of lactate and four different proteins with racemic EuIII and TbIII complexes in aqueous solution. Lactate binding gives rise to strong induced CPL spectra, and the observed emission dissymmetry factors vary linearly with enantiomeric composition. Particularly strong induced TbIII CPL also characterizes the binding interaction of alpha-1-acid glycoprotein with a dissociation constant, Kd, of 2.5 ÎŒM
    corecore