67 research outputs found
Deformation of C*-algebras by cocycles on locally compact quantum groups
Given a C*-algebra A with a left action of a locally compact quantum group G
on it and a unitary 2-cocycle Omega on \hat G, we define a deformation A_Omega
of A. The construction behaves well under certain additional technical
assumptions on Omega, the most important of which is regularity, meaning that
C_0(G)_Omega\rtimes G is isomorphic to the algebra of compact operators on some
Hilbert space. In particular, then A_\Omega is stably isomorphic to the
iterated twisted crossed product \hat G^{op}\ltimes_\Omega G\ltimes A. Also, in
good situations, the C*-algebra A_\Omega carries a left action of the deformed
quantum group G_\Omega and we have an isomorphism G_\Omega\ltimes A_\Omega\cong
G\ltimes A. When G is a genuine locally compact group, we show that the action
of G on C_0(G)_Omega=C*_r(\hat G;Omega) is always integrable. Stronger
assumptions of properness and saturation of the action imply regularity. As an
example, we make a preliminary analysis of the cocycles on the duals of some
solvable Lie groups recently constructed by Bieliavsky et al., and discuss the
relation of our construction to that of Bieliavsky and Gayral.Comment: 29 pages; new version emphasizes the role of 'quantization maps',
improvements in exposition, a few more examples and reference
On second cohomology of duals of compact groups
We show that for any compact connected group G the second cohomology group
defined by unitary invariant 2-cocycles on \hat G is canonically isomorphic to
H^2(\hat{Z(G)};T). This implies that the group of autoequivalences of the
C*-tensor category Rep G is isomorphic to H^2(\hat{Z(G)};T)\rtimes\Out(G). We
also show that a compact connected group G is completely determined by Rep G.
More generally, extending a result of Etingof-Gelaki and Izumi-Kosaki we
describe all pairs of compact separable monoidally equivalent groups. The
proofs rely on the theory of ergodic actions of compact groups developed by
Landstad and Wassermann and on its algebraic counterpart developed by Etingof
and Gelaki for the classification of triangular semisimple Hopf algebras.
In two appendices we give a self-contained account of amenability of tensor
categories, fusion rings and discrete quantum groups, and prove an analogue of
Radford's theorem on minimal Hopf subalgebras of quasitriangular Hopf algebras
for compact quantum groups.Comment: 22 pages, AMS-LaTeX; minor changes, remark 1.2 expanded to explain
unitarity of an element u, final (hopefully) versio
Symmetric invariant cocycles on the duals of q-deformations
We prove that for q not a nontrivial root of unity any symmetric invariant
2-cocycle for a completion of Uq(g) is the coboundary of a central element.
Equivalently, a Drinfeld twist relating the coproducts on completions of Uq(g)
and U(g) is unique up to coboundary of a central element. As an application we
show that the spectral triple we defined in an earlier paper for the
q-deformation of a simply connected semisimple compact Lie group G does not
depend on any choices up to unitary equivalence.Comment: 18 pages; minor changes, to appear in AI
Autoequivalences of the tensor category of Uq(g)-modules
We prove that for q\in\C* not a nontrivial root of unity the cohomology group
defined by invariant 2-cocycles in a completion of Uq(g) is isomorphic to
H^2(P/Q;\T), where P and Q are the weight and root lattices of g. This implies
that the group of autoequivalences of the tensor category of Uq(g)-modules is
the semidirect product of H^2(P/Q;\T) and the automorphism group of the based
root datum of g. For q=1 we also obtain similar results for all compact
connected separable groups.Comment: 5 pages; minor corrections; corollary about Drinfeld twists adde
Co-Amenability of compact quantum groups
We study the concept of co-amenability for a compact quantum group. Several
conditions are derived that are shown to be equivalent to it. Some consequences
of co-amenability that we obtain are faithfulness of the Haar integral and
automatic norm-boundedness of positive linear functionals on the quantum
group's Hopf *-algebra (neither of these properties necessarily holds without
co-amenability).Comment: 25 pages. LaTe
- …