190 research outputs found

    Delphi Study to Reach International Consensus Among Vascular Surgeons on Major Arterial Vascular Surgical Complications

    Get PDF
    Background: The complications discussed with patients by surgeons prior to surgery vary, because no consensus on major complications exists. Such consensus may improve informed consent and shared decision-making. This study aimed to achieve consensus among vascular surgeons on which complications are considered ‘major’ and which ‘minor,’ following surgery for abdominal aortic aneurysm (AAA), carotid artery disease (CAD) and peripheral artery disease (PAD). Methods: Complications following vascular surgery were extracted from Cochrane reviews, national guidelines, and reporting standards. Vascular surgeons from Europe and North America rated complications as major or minor on five-point Likert scales via an electronic Delphi method. Consensus was reached if ≥ 80% of participants scored 1 or 2 (minor) or 4 or 5 (major). Results: Participants reached consensus on 9–12 major and 6–10 minor complications per disease. Myocardial infarction, stroke, renal failure and allergic reactions were considered to be major complications of all three diseases. All other major complications were treatment specific or dependent on disease severity, e.g., spinal cord ischemia, rupture following AAA repair, stroke for CAD or deep wound infection for PAD. Conclusion: Vascular surgeons reached international consensus on major and minor complications following AAA, CAD and PAD treatment. This consensus may be helpful in harmonizing the information patients receive and improving standardization of the informed consent procedure. Since major complications differed between diseases, consensus on disease-specific complications to be discussed with patients is necessary

    Non-Invasive Assessment of Intravascular Pressure Gradients: A Review of Current and Proposed Novel Methods

    Get PDF
    Invasive catheterization is associated with a low risk of serious complications. However, although it is the gold standard for measuring pressure gradients, it induces changes to blood flow and requires significant resources. Therefore, non-invasive alternatives are urgently needed. Pressure gradients are routinely estimated non-invasively in clinical settings using ultrasound and calculated with the simplified Bernoulli equation, a method with several limitations. A PubMed literature search on validation of non-invasive techniques was conducted, and studies were included if non-invasively estimated pressure gradients were compared with invasively measured pressure gradients in vivo. Pressure gradients were mainly estimated from velocities obtained with Doppler ultrasound or magnetic resonance imaging. Most studies used the simplified Bernoulli equation, but more recent studies have employed the expanded Bernoulli and Navier–Stokes equations. Overall, the studies reported good correlation between non-invasive estimation of pressure gradients and catheterization. Despite having strong correlations, several studies reported the non-invasive techniques to either overestimate or underestimate the invasive measurements, thus questioning the accuracy of the non-invasive methods. In conclusion, more advanced imaging techniques may be needed to overcome the shortcomings of current methods
    • …
    corecore