
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 30, 2019

Non-Invasive Assessment of Intravascular Pressure Gradients: A Review of Current
and Proposed Novel Methods

Nguyen, Tin-Quoc; Hansen, Kristoffer; Bechsgaard, Thor; Lönn, Lars; Jensen, Jørgen Arendt; Nielsen,
Michael
Published in:
Diagnostics

Link to article, DOI:
10.3390/diagnostics9010005

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nguyen, T-Q., Hansen, K., Bechsgaard, T., Lönn, L., Jensen, J. A., & Nielsen, M. (2019). Non-Invasive
Assessment of Intravascular Pressure Gradients: A Review of Current and Proposed Novel Methods.
Diagnostics, 9(5), 5. DOI: 10.3390/diagnostics9010005

https://doi.org/10.3390/diagnostics9010005
http://orbit.dtu.dk/en/publications/noninvasive-assessment-of-intravascular-pressure-gradients-a-review-of-current-and-proposed-novel-methods(b35a2ba2-0380-44b0-ab24-55e6c427d87c).html


diagnostics

Review

Non-Invasive Assessment of Intravascular Pressure
Gradients: A Review of Current and Proposed
Novel Methods

Tin-Quoc Nguyen 1,2,*, Kristoffer Lindskov Hansen 1,2, Thor Bechsgaard 3 , Lars Lönn 1,2,
Jørgen Arendt Jensen 4 and Michael Bachmann Nielsen 1,2

1 Department of Diagnostic Radiology, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen,
Denmark; lindskov@gmail.com (K.L.H.); lonn.lars@gmail.com (L.L.); mbn@dadlnet.dk (M.B.N.)

2 Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
3 Department of Radiology, Odense University Hospital Svendborg Hospital, Baagøes Alle 31,

5700 Svendborg, Denmark; thorbechsgaard@gmail.com
4 Center for Fast Ultrasound Imaging, DTU Elektro, Technical University of Denmark, Ørsteds Plads Building

349, 2800 Lyngby, Denmark; jaj@elektro.dtu.dk
* Correspondence: tinqnguyen@gmail.com; Tel.: +45-60-14-15-46

Received: 29 October 2018; Accepted: 26 December 2018; Published: 29 December 2018
����������
�������

Abstract: Invasive catheterization is associated with a low risk of serious complications. However,
although it is the gold standard for measuring pressure gradients, it induces changes to blood flow
and requires significant resources. Therefore, non-invasive alternatives are urgently needed. Pressure
gradients are routinely estimated non-invasively in clinical settings using ultrasound and calculated
with the simplified Bernoulli equation, a method with several limitations. A PubMed literature search
on validation of non-invasive techniques was conducted, and studies were included if non-invasively
estimated pressure gradients were compared with invasively measured pressure gradients in vivo.
Pressure gradients were mainly estimated from velocities obtained with Doppler ultrasound or
magnetic resonance imaging. Most studies used the simplified Bernoulli equation, but more recent
studies have employed the expanded Bernoulli and Navier–Stokes equations. Overall, the studies
reported good correlation between non-invasive estimation of pressure gradients and catheterization.
Despite having strong correlations, several studies reported the non-invasive techniques to either
overestimate or underestimate the invasive measurements, thus questioning the accuracy of the
non-invasive methods. In conclusion, more advanced imaging techniques may be needed to overcome
the shortcomings of current methods.

Keywords: pressure gradient; ultrasound; magnetic resonance imaging; intravascular
catheterization; review

1. Introduction

Intravascular pressure gradients are important to monitor to understand the cardiovascular
system. High gradients across stenotic heart valves may cause symptoms and disability, or even
death [1]. The gold standard is an invasive procedure involving fluoroscopy for guidance, but non-
invasive cost-effective alternative techniques are needed [2–5]. Vascular access for diagnostic and
therapeutic procedures can be performed through various vessels with the femoral artery, radial artery,
and jugular vein being the most widely used access sites [6,7]. Two main pathways exist for invasive
measurements: fluid-filled catheters that transmit pressure-waves to an external pressure sensitive
transducer [8,9], or directly on the pressure sensitive tip of a pressure wire [9].
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Invasive catheterization is associated with various complications, such as bloodstream
infections [10], neurological deficits [11], hematomas and pneumothorax [6]. Additionally, intravascular
tools may narrow the vessel lumen, and ultimately interfere with the measurements [9,12,13].
Catheterization is considered unsuitable for regular follow-up [14] and is not recommended for
routine diagnostic pressure assessment [15,16].

Alternatives to invasive methods are pressure gradients obtained with imaging, such as
ultrasound (US) and magnetic resonance imaging (MRI). By using different equations, acquired
velocity estimations can be converted to pressure gradients [17–21]. The aim of this paper was to
review in vivo studies of non-invasively derived pressure gradients compared with invasive methods
to assess the performance of non-invasive pressure gradient estimation in the literature.

2. Literature Search

A literature search on non-invasive techniques was performed in PubMed on 19 December,
2018, using the following search criteria: ((“Pressure”[Mesh] OR “Blood Pressure”[Mesh] OR “Blood
Pressure Determination”[Mesh] OR “Arterial Pressure”[Mesh]) AND “Diagnostic Imaging”[Mesh])
AND (“Catheterization” OR “Catheterisation”). This resulted in 3978 papers that were narrowed down
to 338 papers by adding the following search criteria: (“Pressure gradient” OR “Pressure drop” OR
“Pressure difference”).

The papers were screened by title and abstract. Inclusion criteria were English language and
comparisons of non-invasive pressure gradient estimation versus invasive methods, in vivo. Full-text
reading was done on the selected papers and additional relevant studies found from the reference list
of these papers were included. In total, 38 publications were included in this review.

3. From Images to Pressure Gradients

Blood accelerates when passing through a stenosis [17]. The conversion of potential energy to
kinetic energy results in a high flow velocity and a drop in pressure [22]. As the diameter widens distal
to a stenosis, flow decelerates and pressure rises again, albeit to a lower pressure level than initially,
as some kinetic energy is removed due to viscous losses and the formation of turbulences [22]. Pressure
gradients cannot be measured directly with imaging modalities. Yet, velocities can be obtained and
used to calculate pressure gradients. The most commonly used formulas to calculate pressure gradients
from velocities are the simplified Bernoulli equation and the Navier-Stokes equations.

The Bernoulli equation is derived from the principle of conservation of energy [18] and is used
to convert velocities to pressure gradients. By assuming peak velocities are acquired, that a large
difference in proximal and distal velocity is present, and by neglecting viscous losses, the equation is
expressed by the simplified Bernoulli equation as

∆p = 4 × v2
2 (1)

where ∆p is the pressure gradient and v2 is the measured peak velocity in the stenosis [17,18].
The simplified Bernoulli equation has several shortcomings due to the assumptions made. Firstly,
it cannot be used if the distal velocity approaches the proximal velocity. Secondly, it is inaccurate
for narrow and long stenoses, where viscous losses are significant [18]. Thirdly, flow is assumed
to be laminar in one direction with a constant velocity, and thus neglects the complexity of
hemodynamics [23]. Additionally, the equation may result in overestimation of the invasively measured
pressure gradient, if the downstream invasive measurement is not performed close to the stenosis [18].

If the distal velocity approaches the proximal velocity, the proximal velocity can no longer be
neglected, and v2 has to be replaced with the distal and proximal velocities. This can be expressed by
the expanded Bernoulli equation as

∆p = 4×
(

v2
2 − v1

2
)

(2)
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where v2 is the distal flow velocity, and v1 the proximal velocity [18].
The Navier–Stokes equations describe flow hemodynamics more accurately than the Bernoulli

equation [23] and can be used to calculate pressure gradients from velocity fields. Fluids are assumed to
be incompressible and Newtonian [24]. The equations are derived from the laws of mass conservation
and linear momentum [19–21] and can be expressed as

−∇p = ρ

(
∂v
∂t

+ v×∇v− g
)
− µ∇2v (3)

where p is pressure, ρ is fluid density, ∂v/∂t is temporal acceleration, ∇ is divergence, v is velocity,
µ is fluid viscosity, and g is the gravitational force. The Bernoulli equation is a simplification of the
Navier–Stokes equations [23], as it neglects the temporal acceleration, the viscous losses and the
gravitational forces. The Navier–Stokes equations do not make these assumptions, but require an
increased amount of measurements of the full velocity field for estimating pressure gradients [25].

4. Imaging Modalities

Both the Bernoulli and the Navier–Stokes equations depend on flow velocities being measured to
calculate pressure gradients across stenoses. Blood flow velocities can be obtained non-invasively with
different medical imaging techniques, i.e., MRI and US.

4.1. Magnetic Resonance Imaging

MRI is a non-invasive imaging modality depicting detailed anatomical structures without using
ionizing radiation [26,27]. MRI utilizes the changes in hydrogen-nuclei being exposed to radiofrequency
signals inside a strong magnetic field.

Flow velocities can be obtained with Phase Contrast MRI (PC-MRI), which measures the phase
shift of moving spins [28]. The net phase shift is proportional to the flow velocity (Figure 1) [29,30].
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Figure 1. The left image shows a time-of-flight image of the neck in the transverse scan plane. The
image is used for identifying and marking the carotid arteries for velocity estimation with phase
contrast MRI. The right image shows the phase contrast image using a through-plane sequence. Images
were provided by co-author Kristoffer Lindskov Hansen.

MRI is widely considered the gold standard for estimation of flow velocity and volume
flow [31–34]. MRI is known to have high spatial resolution (approximately 100 µm) and good contrast
for tissue differentiation, but drawbacks are that MRI is expensive, relatively time consuming and
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can be difficult to perform on patients with certain metallic foreign bodies or claustrophobia [35–37].
Additionally, conventional cardiac PC-MRI is gated with electro-cardiogram and has to be performed
over multiple cardiac cycles, but alternative MRI-techniques are emerging, allowing for real-time
velocity estimation [38].

4.2. Ultrasound

US is a non-invasive imaging modality capable of producing real-time visualization of anatomical
structures without adverse effects [39]. Sound waves are emitted from the US transducer, and the
strength of the sound waves reflected back depends on the tissue medium they have interacted
with. Flow velocities can be obtained with Doppler US by examining the change in frequency of the
returning sound wave. The movement of red blood cells in flowing blood increase or decrease the
frequency of emitted sound waves depending on their flow direction, and the measured blood velocity
is proportional to the returning shift in Doppler frequency [40].

US is a portable, real-time diagnostic imaging modality with low expenses, with high spatial
resolution (2.5 µm), and high temporal resolution [39,41]. Limitations include a small field of view,
angle dependent velocity estimation and suboptimal insonation windows [15,42–44]. Guidelines
recommend using continuous wave Doppler US for measuring peak velocities and peak pressure
gradients across aortic and tricuspid valves [15,45], as the technique allows for evaluation of higher
velocities than pulsed wave Doppler (Figure 2). However, a disadvantage of using continuous wave
Doppler US is that no information of depth is obtained, as the acquired peak velocity can be from
anywhere along the interrogation line [46].
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Figure 2. Continuous wave Doppler ultrasound of flow across the pulmonary valve in a patient with
pulmonary valve stenosis. Peak pressure gradient (“Maks PG”) shown in upper right corner of the
screen was calculated in real-time from peak velocity by using the simplified Bernoulli equation. Image
was provided by Klaus Juul (Department of Pediatric Cardiology, Copenhagen University Hospital,
Denmark).

5. Estimation of Pressure Gradients in the Heart and the Larger Thoracic Arteries

The recommended initial imaging modality for diagnosing diseases in the cardiovascular system
is transthoracic echocardiography [16,45,47], though MRI is also widely used for imaging of the
chest [48,49]. In this section, results from studies of the cardiovascular system evaluating the accuracy of
estimated pressure gradients compared with invasively measured pressure gradients will be reviewed.



Diagnostics 2019, 9, 5 5 of 19

5.1. Aortic and Mitral Valves

Valve area is included in the reference measurement for assessing aortic valve stenosis severity
and estimated with transthoracic echocardiography using planimetry [16]. However, the severity of a
stenosis cannot be evaluated from this measurement alone. Other parameters like the transvalvular
peak velocity and peak pressure gradient must also be considered. The transvalvular estimated
pressure gradient is a robust measure and is used as a prognostic indicator [22,50]. Several studies have
evaluated the accuracy of transvalvular estimated pressure gradient derived from Doppler US using
the simplified Bernoulli equation (Equation (1)) by comparing with an invasively measured pressure
gradient. Studies conducted between the late 1970s and 1980s reported strong correlations between
estimated and invasively measured pressure gradients for both aortic and mitral valve stenosis (r = 0.72
to 0.97) [17,42,46,51–56], with the majority reporting the estimated pressure gradients to underestimate
the invasively measured ones [17,42,46,51,52]. Inaccurate angling between Doppler beam and peak
blood flow velocity was suggested as the main reason for this. Hatle et al. found the underestimation
to be more pronounced in patients >50 years old and suggested that anatomical changes, such as valve
deformity and calcifications, could induce a greater variation in peak flow direction [52].

Contrarily, other studies reported the estimated pressure gradients to overestimate the invasively
measured values (mean bias: +0.4 to +19 mmHg) [57–59]. Overestimation by Doppler US was suggested
to be caused by a phenomenon called “pressure recovery” [57,58], by which the discrepancy between
the methods is caused by improper placement of the catheter during measurement of the distal
intravascular pressure [18]. The distal pressure should ideally be measured with the catheter placed
immediately downstream of the stenosis, as the increase in pressure does not occur immediately after
passing a stenosis, but will instead happen as a steady increase downstream [58].

Baumgartner et al. suggested a method to correct for pressure recovery and reported both
“non-corrected estimated pressure gradients” and “corrected estimated pressure gradients” to correlate
strongly with invasively measured pressure gradients (n = 21; r = 0.93 to 0.97) [58]. The authors reported
non-corrected estimated pressure gradients to significantly overestimate the invasively measured
ones (mean bias: +18 mmHg), while the corrected estimated pressure gradients did not (mean bias:
+0.4 mmHg). However, when Yamazawa et al. applied the suggested correction to their velocity data
obtained with Doppler US, mean bias for estimated pressure gradients changed from overestimating,
when non-corrected, to instead underestimating the invasive measurements, when corrected (r = 0.87 to
0.79, mean bias: +8.5 mmHg to −9.1 mmHg) [60]. Eichenberger et al. examined 10 patients with aortic
valve stenosis and three healthy subjects using Doppler US, PC-MRI and cardiac catheterization, and
found estimated pressure gradients from both imaging modalities to correlate strongly with invasively
measured pressure gradients (n = 13, Doppler US: r = 0.96; PC-MRI: r = 0.97) [61]. The pressure
gradients were calculated by applying the simplified Bernoulli equation (Equation (1)) to estimated
peak velocities.

5.2. Pulmonary Arteries

Patients suspected of pulmonary arterial hypertension are examined with transthoracic
echocardiography to estimate the systolic pressure in the pulmonary artery, which is achieved
by summating the pressure gradient across the tricuspid valve with the right atrial pressure [45].
In echocardiography, the tricuspid pressure gradient is obtained by applying the simplified Bernoulli
equation (Equation (1)) to the tricuspid regurgitation velocity [45,62]. Hioka et al. reported estimated
pressure gradients derived from Doppler US across the tricuspid valve to correlate well with invasively
measured pressure gradients with a small mean bias (n = 55, r = 0.73, p < 0.001; mean bias:
+2.5 mmHg) [63]. The bias became more pronounced the more severe the stenosis was [63]. Right atrial
pressure is approximated by measuring the respiratory variation of the diameter of the inferior vena
cava during a sniff maneuver. However, estimation of right atrial pressure by visually evaluating the
inferior vena cava has limited precision [64,65]. Magnino et al. reported the average accuracy between
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non-invasive estimation of right atrial pressure and invasive pressures measured during right heart
catheterization to be 34% [65].

The accuracy of echocardiography for pulmonary hypertension diagnosis was evaluated
in a meta-analysis by Janda et al. [66]. The authors reported a moderate correlation between
echocardiography and invasive catheterization (summary correlation coefficient: 0.70). The meta-
analysis included 29 studies that compared pulmonary arterial hypertension assessed with Doppler
US with the invasively measured pressures of right heart catheterization in 1998 patients. However,
41% of the patients had suboptimal tricuspid regurgitation velocities, which could potentially result in
underestimation of the tricuspid pressure gradient. Because of the limitations, it was concluded
that echocardiography should not be recommended as a stand-alone modality for pulmonary
hypertension diagnosis.

Nogami et al. used PC-MRI to estimate pressure gradients across the tricuspid valve in 20 patients
by applying the simplified Bernoulli equation (Equation (1)) to peak regurgitant velocities [67].
The estimated pulmonary artery systolic pressure strongly correlated with values obtained during
right heart catheterization (n = 20, r = 0.94, p < 0.0001).

5.3. Coarctation of the Aorta

Transthoracic echocardiography, cardiac MRI, and cardiac computed tomography (CT) are the
recommended methods for diagnosing patients suspected of coarctation, while cardiac catheterization
is reserved for intravascular treatment [47]. Intervention is indicated if invasive peak-to-peak pressure
gradient is measured to be greater than 20 mmHg, but may be less than 20 mmHg if radiological
evidence of coarctation is significant. Studies evaluating the accuracy of estimated pressure gradients
have shown varying results. Strong correlations were reported between Doppler US derived pressure
gradients calculated with the expanded Bernoulli equation (Equation (2)) and pressure gradients
measured with invasive catheterization (n = 32; r = 0.98 and n = 28; r = 0.76) [8,68]. When the
simplified Bernoulli equation (Equation (1)) was used, correlations remained strong (r = 0.91 and
r = 0.74) [8,68]. Contrarily, several other studies have found the correlation between estimated and
invasively measured pressure gradients to be weak (r = 0.35 to 0.47) [69–71], and the published results
for estimating pressure gradient with Doppler US in aortic coarctation are diverse.

Oshinski et al. estimated pressure gradients from PC-MRI data and reported superior accuracy
compared with estimated values derived from Doppler US, when compared with invasively
measured pressure gradients [72]. No correlation coefficient between the methods was reported,
and only a minority of the patients had invasive catheterization performed, i.e., 6 out of 32 patients.
Pressure gradients have also been estimated from PC-MRI data using computational fluid dynamics
simulations [73–76]. Simulated fluid motions based on Navier–Stokes equations have been reported to
agree well with invasively measured pressure gradients before (r = 0.97, p = 0.00 and r = 0.85, p < 0.001)
and after dilation of aortic coarctation (r = 0.87, p = 0.00) [75,76].

5.4. Coronary Arteries

Coronary CT angiography is the initial method for low-risk patients suspected of having
coronary artery disease [77], thus replacing the conventional diagnostic coronary angiography with a
non-invasive imaging modality. However, CT angiography is only used for mapping and characterizing
anatomy and not for hemodynamic assessment.

Deng et al. published a study on PC-MRI data in flow phantoms for pressure estimation in the
coronary arteries using the Navier–Stokes equations, and a strong correlation between estimated and
invasively measured pressure gradients was reported (r = 0.97) [78]. When the technique was applied
to patients, the pressure gradient was observed to increase exponentially with increasing stenosis
severity. The paper did not report a correlation coefficient for the patient study. The limited amount
of MRI-studies investigating the accuracy of pressure gradients in the coronary arteries, may be due
to several obstacles: Viscous losses become more significant in small vessels, making the simplified
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Bernoulli (Equation (1)) equation less useful [79]. Furthermore, cardiac and respiratory motion, and the
small size of the vessels, all affect the assessment of flow [78,80,81].

Likewise, only few studies have investigated the use of US for coronary arteries. Artifacts caused
by calcifications, adjacency to the lung, cardiac, and respiratory motion, and the branching nature of
the coronary arteries, all contribute to making it difficult to evaluate these vessels with US [82–84].
No studies investigating the use of Doppler US for estimating pressure gradients in the coronary
arteries were found.

6. Estimation of Pressure Gradients in Carotids and Peripheral Vessels

Comparative studies between non-invasive estimation of pressure gradients and catheterization
have also been performed in vessels outside the thoracic region. Doppler US, CT angiography,
and MRI angiography are all recommended as diagnostic imaging methods for assessing the severity
of peripheral artery disease [85]. Invasive angiography is only indicated, when non-invasive methods
are inconclusive, or when revascularization is clinically indicated. Correlations were reported to be
weak to moderate for the carotid arteries, when Illig et al. compared invasively measured pressure
gradients with estimated pressure gradients derived from Doppler US using the simplified (n = 77,
r = 0.419, p < 0.0001) (Equation (1)) and the expanded Bernoulli equation (n = 77, r = 0.374, p = 0.0008)
(Equation (2)) [86]. Doppler US studies of the iliac arteries have reported results to be diverse with
correlations ranging from weak to strong. In studies that applied the expanded Bernoulli equation
(Equation (2)), the estimated pressure gradient was found to overestimate and to correlate from
weakly to moderately with invasively measured values (n = 261, r = 0.27 and n = 33, r = 0.54) [87,88].
De Smet et al. suggested the low correlation to be caused by a large Doppler angle secondary to
the course of the iliac arteries [87]. Langsfeld et al. and Strauss et al. used the simplified Bernoulli
equation (Equation (1)) and reported the correlation between estimated and invasively measured
pressure gradients to be strong, when performed on the iliac arteries (n = 23, r = 0.9, p < 0.01 and n = 28,
r = 0.76, p < 0.0001) [89,90].

Several animal studies have evaluated the accuracy of non-invasive methods in peripheral vessels.
Pressure gradients have been calculated by applying the Navier–Stokes equations to PC-MRI data in
surgically created cerebral aneurysms [91], carotid stenoses [80,92] and renal artery stenoses [80,93]
resulting in an overall strong correlation with invasive catheterization (r = 0.82 to 0.95).

The referenced papers in this section are listed in Table 1.
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Table 1. Shows a list of included studies in this review. “Simultaneous Doppler US” involved Doppler US to be performed simultaneously with catheterization.
“Instantaneous gradients” is the correlation between a maximum Doppler US or MRI derived pressure gradient compared with an invasive pressure gradient
measured using a dual-head catheter, which allowed for simultaneous invasive pressure measurement before and after a stenosis. “Peak-to-peak” is the correlation
between maximum Doppler US or MRI derived pressure gradient compared with an invasive pressure gradient measured between the peak pressures before and after
a stenosis. “Peak gradient” did not clearly specify how invasive pressure gradients were measured. “Mean gradient” is the correlation between a Doppler US or MRI
derived mean pressure gradient compared with an invasively measured mean pressure gradient. * A correlation coefficient for the post-treatment comparison was
not reported.

Study Year Country Study Population (Subjects) Methods Used Results

Aortic and Mitral Valve

Hatle et al. [17] 1978 Norway Mitral valve stenosis (n = 35)
Other valve lesions (n = 20)

Simultaneous Doppler US and simultaneous
left and right heart catheterization.
Doppler US before and after simultaneous
left and right heart catheterization.

Reports good correlation between Doppler
US and catheter gradients

Hegrenaes et al. [42] 1985 Norway Aortic valve stenosis (n = 87) Doppler US and catheter pullback Reported underestimation by Doppler US

Stamm et al. [46] 1983 USA Aortic valve stenosis (n = 26)
Mitral valve stenosis (n = 27)

Doppler US and simultaneous left
ventricular and femoral artery
catheterization.

Aortic valve stenosis: r = 0.95
Mitral valve stenosis: r = 0.85

Knutsen et al. [51] 1982 Norway Mitral valve stenosis (n = 16) Simultaneous Doppler US and simultaneous
left and right heart catheterization.

Mean gradient: r = 0.83
Mean difference: −4.9 mmHg

Hatle et al. [52] 1980 Norway Aortic valve stenosis (n = 37) Doppler US and catheterization Reported underestimation by Doppler US in
8 out of 37 patients

Currie et al. [53] 1985 USA Aortic valve stenosis (n = 100)

Simultaneous Doppler US and
dualhead-catheter
Simultaneous Doppler US and catheter
pullback

Mean gradient:
r = 0.92, mean difference: −4 mmHg
Instantaneous gradient:
r = 0.92, mean difference: −19 mmHg
Peak-to-peak gradient: r = 0.91

Currie et al. [54] 1986 USA Cardiac lesions (n = 95) Simultaneous Doppler US and
dualhead-catheter

Instantaneous gradient:
r = 0.95, mean difference: −4 mmHg
Peak-to-peak gradient: r = 0.92

Burstow et al. [55] 1989 USA Prosthetic valves (n = 36) Simultaneous Doppler US and
dualhead-catheter

Mean gradient: r = 0.97
Instantaneous gradient: r = 0.94
Peak-to-peak gradient:
r = 0.72, mean difference: −1 mmHg

Yeager et al. [56] 1986 USA Aortic valve stenosis (n = 52) Doppler US and catheter pullback Mean gradient: r = 0.87
Peak-to-peak gradient: r = 0.84
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Table 1. Cont.

Study Year Country Study Population (Subjects) Methods Used Results

Ohlsson et al. [57] 1986 Sweden Aortic valve stenosis (n = 24) Doppler US and simultaneous aortic arch
and left ventricle catheterization

Mean gradient: r = 0.92
Instantaneous gradient: r = 0.89

Baumgartner et al.
[58] 1999 Austria Aortic valve stenosis (n = 21) Doppler US and dualhead-catheter

Non-corrected instantaneous gradient:
r = 0.95, mean difference: +18 mmHg
Corrected instantaneous gradient:
r = 0.97, mean difference: +0.4 mmHg
Non-corrected mean gradient:
r = 0.93, mean difference: +12 mmHg
Corrected mean gradient:
r = 0.96, mean difference: +1.1 mmHg

VanAuker et al. [59] 2000 USA Aortic valve stenosis (n = 14) Simultaneous Doppler US and
dualhead-catheter Mean difference: +42%

Yamazawa et al. [60] 2010 Japan Aortic valve stenosis (n = 13) Doppler US and catheter pullback

Non-corrected mean gradient:
r = 0.98, mean difference: +5.7 mmHg
Non-corrected peak-to-peak gradient:
r = 0.87, mean difference: +8.5 mmHg
Corrected mean gradient:
r = 0.91, mean difference: −4.9 mmHg
Corrected peak-to-peak gradient:
r = 0.79, mean difference: −9.1 mmHg

Eichenberger et al.
[61] 1993 Switzerland Aortic valve stenosis (n = 19)

Doppler US (n = 15)
MRI (n = 19)
Catheterization (n = 13)

Doppler US vs catheter: r = 0.96
MRI vs catheter: r = 0.97

Pulmonary Hypertension

Hioka et al. [63] 2017 Japan Patients referred for right heart
catheterization (n = 55) Doppler US and catheterization Tricuspid gradient:

r = 0.73, mean difference: +2.52 mmHg

Fisher et al. [64] 2009 USA Pulmonary hypertension (n = 65) Doppler US and catheterization
Pulmonary artery systolic pressure:
r = 0.66, mean difference: −0.6 mmHg
Tricuspid mean difference: −1.8 mmHg

Janda et al. [66] 2011 Canada Pulmonary hypertension Meta-analysis

Pulmonary artery systolic pressure:
r = 0.70
Summary sensitivity: 83%
Summary specificity: 72%

Nogami et al. [67] 2009 Japan Pulmonary hypertension (n = 20) Doppler US, MRI and catheterization
Pulmonary artery systolic pressure:
Doppler US vs. catheter: r = 0.86
MRI vs. catheter: r = 0.94
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Table 1. Cont.

Study Year Country Study Population (Subjects) Methods Used Results

Coarctation of Aorta

Syamasundar et al. [8] 1989 Saudi Arabia Coarctation of Aorta (n = 28) Doppler US and catheter pullback Simple Bernoulli: r = 0.76
Expanded Bernoulli: r = 0.76

Marx et al. [68] 1986 USA Coarctation of aorta (n = 28) Doppler US and catheter pullback

Simple Bernoulli:
r = 0.91, mean difference: +8 mmHg
Expanded Bernoulli:
r = 0.98, mean difference: 0 mmHg

Houston et al. [69] 1987 Scotland Coarctation of aorta (n = 46) Doppler US, catheter pullback,
dualhead-catheter, two catheters

Instantaneous gradient: r = 0.36
Peak-to-peak: r = 0.42

Wisotzkey et al. [70] 2015 USA Aortic arch obstruction (n = 60) Doppler US and catheter pullback Simple Bernoulli: r = 0.47
Expanded Bernoulli: r = 0.35

Tang et al. [71] 2009 USA Coarctation of aorta (n = 34) Doppler US and catheter pullback

Peak-to-peak gradient:
r = 0.37, mean gradient:
r = 0.001
Reported overestimation of peak pressure
gradient by Doppler US

Oshinski et al. [72] 1996 USA Coarctation of aorta (n = 32)
Doppler US (n = 22)
MRI (n = 22)
Catheterization (n = 6)

Reported a non-significant difference
between MRI and catheter gradients after
correction after a new suggested model

Itu et al. [73] 2013 USA Coarctation of aorta (n = 4) Computer simulation on patient MRI data
and catheterization data

Reported good agreement between MRI and
catheter gradients

Sotelo et al. [74] 2015 France Coarctation of aorta (n = 7) Simultaneous MRI and catheterization. Reported good agreement between MRI and
catheter gradients.

Goubergrits et al. [75] 2015 Germany Coarctation of aorta (n = 13) MRI and simultaneous ascending aorta and
femoral catheterization

Peak gradient: Pre-treatment: r = 0.97,
Mean difference: −0.5 mmHg (p = 0.8)
Post-treatment: r = 0.87,
Mean difference: +3.0 mmHg (p = 0.00)

Mirzaee et al. [76] 2017 Germany Coarctation of aorta (n = 12) MRI and catheterization

Pre-treatment: r = 0.85,
Mean difference: −0.58 mmHg (p = 0.64)
Post-treatment: r = NA*,
Mean difference: −2.54 mmHg (p = 0.04)

Coronary Artery

Deng et al. [78] 2017 USA Coronary artery stenosis (n = 6) MRI and catheterization Reported a trend between MRI and
catheterization
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Table 1. Cont.

Study Year Country Study Population (Subjects) Methods Used Results

Carotid Artery

Illig et al. [86] 1996 USA Carotid artery stenosis (n = 76) Doppler US, and direct puncture of the
common carotid and internal carotid artery

Simplified Bernoulli: r = 0.374
Expanded Bernoulli: r = 0.419

Iliac Artery

De Smet et al. [87] 2000 Netherlands Iliac artery stenosis (n = 261) Doppler US and dual-catheter before and
after treatment.

Instantaneous gradient: r = 0.27
Reported overestimation by Doppler US

Kohler et al. [88] 1987 USA Iliac artery stenosis (n = 18) Doppler US and catheterization Expanded Bernoulli: r =0.54

Langsfeld et al. [89] 1988 USA Iliac artery stenosis (n = 11) Doppler US and catheter pullback Pressure gradient: r = 0.9

Strauss et al. [90] 1993 Germany Iliac artery stenosis (n = 28) Doppler US and catheter pullback

Mean gradient:
r = 0.77, mean difference: −2 mmHg
Instantaneous gradient:
r = 0.80, mean difference: −1 mmHg
Peak-to-peak gradient:
r = 0.76, mean difference: −7 mmHg

Animal studies

Lum et al. [80] 2007 USA Porcine with surgically created
stenosis (n = 12)

MRI and dual-catheter in:
Carotid stenosis (n = 12)
Renal artery stenosis (n = 9)
Iliac stenosis (n = 9)

Mean gradients:
Carotid artery: r = 0.891
Renal artery: r = −0.0815
Iliac artery: r = 0.915
Mean difference for carotid + iliac arteries:
+0.86 mmHg

Moftakhar et al. [91] 2007 USA Canines with surgically created
carotid bifurcation aneurysm (n = 8) MRI and catheterization Intra-aneurysmal pressures: r = 0.82

Turk et al. [92] 2007 USA Canines with surgically created
carotid bifurcation stenosis (n = 6) MRI and catheter pullback Pressure gradient: r = 0.86

Bley et al. [93] 2011 USA Porcine with surgically created renal
artery stenosis (n = 12)

MRI and two catheters before and after
stenosis

Peak gradient: r = 0.91
Mean gradient: r = 0.98
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7. Discussion

Catheterization with pressure transducers is considered the gold standard for measuring
intravascular pressures, but is an invasive procedure associated with risk of complications and
ionizing radiation for guidance. Instead, US has been recommended for hemodynamic assessment
of nearly all thoracic vessels, as the method is widely accessible, inexpensive compared with other
methods, and provides real-time diagnostic images with an overall strong correlation with invasive
measurements in the heart. When image quality of US is insufficient, or if the results do not agree with
the clinical findings, MRI can be used as an alternative method to US [16,94]. Both US and MRI are
desired methods as they are non-invasive and do not require ionizing radiation for imaging.

Though, non-invasive estimation of pressure gradients is not without limitations. Estimated
pressure gradients are calculated from blood flow velocities (Equations (1)–(3)) and are dependent on
the velocity estimation to be precise. However, a gold standard for flow velocity estimation has not yet
been established [31–34], making the evaluation of the accuracy of non-invasive velocity estimation
difficult. Most of the studies comparing non-invasive estimation of pressure gradients with invasive
catheterization used the simplified or expanded Bernoulli equation (Equations (1) and (2)) to convert a
velocity into a pressure gradient. These equations neglect blood viscosity and pressure recovery, and
the results may overestimate invasively measured pressure gradients [23,72,88,95,96]. Another source
of error is that US produces images in two dimensions, but velocity estimation with Doppler US is only
measured in one dimension, making it prone to error due to angle dependency [42,44]. MRI does not
encounter this problem, as MRI measures flow velocities in three dimensions, but MRI is performed
over multiple cardiac cycles with low temporal resolution, and the accuracy of velocity estimation may
decrease further in vessels with large changes in flow velocity [50,97].

Additionally, comparison of non-invasive instantaneous pressure gradients with invasive pressure
gradients measured with the peak-to-peak method poses another problem. Pressure gradients
measured instantaneously and peak-to-peak will be different, as the pre-stenotic peak pressure does
not occur simultaneously with the post-stenotic peak pressure during systole [7,90]. As the pre-stenotic
pressure reaches its peak, the post-stenotic pressure will still increase [69,90], and thus the peak-to-peak
pressure gradient is a non-physiological parameter [7]. The difference in pressure gradient between the
peak-to-peak method and the instantaneous method was evaluated by Strauss et al. and Houston et
al., who reported the mean differences to be 7 mmHg (p < 0.05; r = 0.76, p < 0.001) and 7.5 mmHg (2 SD:
−45.4 to 30.3 mmHg), respectively [69,90]. Following these findings, studies comparing instantaneous
non-invasive pressure gradients with peak-to-peak invasive measurements would be expected to
report a positive systematic bias, if the non-invasive method is precise.

Doppler US is routinely used by cardiologists for estimation of blood pressure gradients, so its
accuracy has already been widely accepted by many clinicians. Catheterization is still used, when
non-invasive methods do not agree with the clinical findings [16]. However, Vecchi et al. reported
catheters to overestimate pressure wires by 24% in vitro [9]. This finding was supported by computer
simulations that found the overestimation to be 29%, while the catheter was present in the phantom.
When the catheter was removed, the discrepancy in pressure measurement between pressure wire and
the computer simulations was reduced to 1.5%. Therefore, using a catheter as a reference standard is
questionable, as catheters narrow existing stenoses further and alters flow, thus overestimating the
“actual” pressure gradient and disease severity [9,12,13]. Comparison of non-invasive methods with an
inaccurate measuring method will at best result in it being just as inaccurate. Use of thinner pressure
wires in clinical practice still remain less common due to technical complications, increased expenses,
and the need for more extensive training of operators [9]. Most studies included in this review have
used fluid-filled catheters to measure invasive pressures, and simultaneous invasive catheterization
with non-invasive pressure gradient estimation was rarely performed. This resulted in the stenosis
being less severe, when the non-invasive pressure gradient was being estimated.

Discrepancies in measurements can lead to undesired consequences. If the invasively measured
pressure gradient is assumed to measure the true value and correctly reflect disease severity,
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then inaccurate estimation with non-invasive methods may result in misclassification of severity
and can result in an individual being offered the wrong treatment strategy. Fisher et al. defined a
pulmonary artery systolic pressure estimate by Doppler to be accurate if it was within 10 mmHg of
the catheter measurement [64], but they found the Doppler US to be inaccurate in 48% of the cases
(n = 65). Rich et al. reported similar findings, when they used the same criteria for accuracy and
reported Doppler US to be inaccurate in 50.6% of cases (n = 160) [98]. However, despite the risk of
misclassification, Doppler US is still recommended by multiple guidelines as the first-in-line method
to diagnose vascular disease [16,45,47,85], as the availability and ease of use still outweighs the risks
and costs of an invasive procedure. The use of non-invasive methods for hemodynamic evaluation in
clinical work relies on its ability to detect a clinically significant obstruction and to correctly classify
the severity. The daily use of Doppler US by many clinicians is proof that the accuracy of US is within
an acceptable threshold, but is ultimately dependent on the clinical context.

Following the advancement in computer technology, more studies have investigated pressure
gradients calculated with the Navier–Stokes equations (Equation (3)) using PC-MRI data. None of the
studies in this review evaluating estimated pressure gradients derived with Doppler US have used the
Navier–Stokes equations.

Olesen et al. suggested a method for estimation of pressure gradients based on the transverse
oscillation method (Figure 3) [20,99]. The transverse oscillation method obtains angle-independent
two-dimensional vector velocities, and by using either the Navier–Stokes equations (Equation (3)) or
the non-steady Bernoulli equation, the authors estimated pressure gradients along plotted streamlines
in healthy subjects [20,100]. Brandt et al. measured peak velocities with transverse oscillation and
conventional Doppler US, and compared the estimates with MRI. Transverse oscillation was reported
to be more accurate and precise than Doppler US for velocity estimation [101], which may translate
into improved pressure gradient estimation.

Two-dimensional vector velocities may prove to be essential to understand the complex
intravascular hemodynamics in circulation [40]. By visualizing and measuring flow in two dimensions
rather than one, it may be possible to overcome some of the limitations experienced with conventional
Doppler US, e.g., the angle dependency [40]. Unfortunately, out-of-plane motion in the third axis may
still occur. Three-dimensional vector velocity estimation using US has been proposed and validated
in vivo by Holbek et al. [102], but it has not yet been used for estimating pressure gradients.
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Figure 3. The left image shows vector velocity imaging of an arteriovenous fistula in a patient before
intravascular balloon treatment of a stenosis. Arrows and colors represent the two-dimensional vector
velocities as indicated by the color-box. Two vertical lines are manually placed, and a streamline
representing the highest velocity between the two vertical lines is drawn. The right image shows the peak
pressure gradient as a function of time along the plotted streamline over several heartbeats. Both the image
and graph were created with an application provided by Jacob B. Olesen (BK Medical, Herlev, Denmark).
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8. Conclusions

Overall, pressure gradients estimated with MRI and Doppler US correlate well with invasively
measured pressure gradients. However, velocity estimation by Doppler US and calculation of
pressure gradients using the simplified Bernoulli equation has several limitations, and future
developments should aim for more advanced techniques. Using MRI, vector velocity US or possibly
three-dimensional US in combination with the Navier–Stokes equations may provide a more accurate
evaluation of flow hemodynamics, assisting the clinician in treatment of cardiovascular disease.
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