41 research outputs found

    A QM/MM equation-of-motion coupled-cluster approach for predicting semiconductor color-center structure and emission frequencies

    Get PDF
    Valence excitation spectra are computed for all deep-center silicon-vacancy defect types in 3C, 4H, and 6H silicon carbide (SiC) and comparisons are made with literature photoluminescence measurements. Nuclear geometries surrounding the defect centers are optimized within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substitutional chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement in all cases considered.Comment: 13 pages, 4 figures, 6 tables, 5 equations, 100 reference

    Theoretical Investigation of Stabilities and Optical Properties of Si\u3csub\u3e12\u3c/sub\u3eC\u3csub\u3e12\u3c/sub\u3e Clusters

    Get PDF
    By sorting through hundreds of globally stable Si12C12 isomers using a potential surface search and using simulated annealing, we have identified low-energy structures. Unlike isomers knit together by Si–C bonds, the lowest energy isomers have segregated carbon and silicon regions that maximize stronger C–C bonding. Positing that charge separation between the carbon and silicon regions would produce interesting optical absorption in these cluster molecules, we used time-dependent density functional theory to compare the calculated optical properties of four isomers representing structural classes having different types of silicon and carbon segregation regions. Absorptions involving charge transfer between segregated carbon and silicon regions produce lower excitation energies than do structures having alternating Si–C bonding for which frontier orbital charge transfer is exclusively from separated carbon atoms to silicon atoms. The most stable Si12C12 isomer at temperatures below 1100 K is unique as regards its high symmetry and large optical oscillator strength in the visible blue. Its high-energy and low-energy visible transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer

    The closo-Si\u3csub\u3e12\u3c/sub\u3eC\u3csub\u3e12\u3c/sub\u3e Molecule from Cluster to Crystal: A Theoretical Prediction

    Get PDF
    The structure of closo-Si12C12 is unique among stable SinCm isomers (n, m \u3e 4) because of its high symmetry, π–π stacking of C6 rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si12C12 molecules through Si–Si bonds at unsaturated Si atoms. As a result the closo-Si12C12 molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer without large distortion of the monomer structure. 3D crystals are formed by stacking 2D structures in the Z direction, preserving registry of C6 rings in monomer moiety

    The Lowest-Energy Isomer of C2Si2H4 Is a Bridged Ring: Reinterpretation of the Spectroscopic Data Based on DFT and Coupled-Cluster Calculations

    Get PDF
    The lowest-energy isomer of C2Si2H4 is determined by high-accuracy ab initio calculations to be the bridged four-membered ring 1,2-didehydro-1,3-disilabicyclo[1.1.0]butane (1), contrary to prior theoretical and experimental studies favoring the three-member ring silylsilacyclopropenylidene (2). These and eight other low-lying minima on the potential energy surface are characterized and ordered by energy using the CCSD(T) method with complete basis set extrapolation, and the resulting benchmark-quality set of relative isomer energies is used to evaluate the performance of several comparatively inexpensive approaches based on many-body perturbation theory and density functional theory (DFT). Double-hybrid DFT methods are found to provide an exceptional balance of accuracy and efficiency for energy-ordering isomers. Free energy profiles are developed to reason the relatively large abundance of isomer 2 observed in previous measurements. Infrared spectra and photolysis reaction mechanisms are modeled for isomers 1 and 2, providing additional insight about previously reported spectra and photoisomerization channels

    Searching for Stable Si\u3csub\u3en\u3c/sub\u3eC\u3csub\u3en\u3c/sub\u3e Clusters: Combination of Stochastic Potential Surface Search and Pseudopotential Plane-Wave Car-Parinello Simulated Annealing Simulations

    Get PDF
    To find low energy SinCn structures out of hundreds to thousands of isomers we have developed a general method to search for stable isomeric structures that combines Stochastic Potential Surface Search and Pseudopotential Plane-Wave Density Functional Theory Car-Parinello Molecular Dynamics simulated annealing (PSPW-CPMD-SA). We enhanced the Sunders stochastic search method to generate random cluster structures used as seed structures for PSPW-CPMD-SA simulations. This method ensures that each SA simulation samples a different potential surface region to find the regional minimum structure. By iterations of this automated, parallel process on a high performance computer we located hundreds to more than a thousand stable isomers for each SinCn cluster. Among these, five to 10 of the lowest energy isomers were further optimized using B3LYP/cc-pVTZ method. We applied this method to SinCn (n = 4–12) clusters and found the lowest energy structures, most not previously reported. By analyzing the bonding patterns of low energy structures of each SinCn cluster, we observed that carbon segregations tend to form condensed conjugated rings while Si connects to unsaturated bonds at the periphery of the carbon segregation as single atoms or clusters when n is small and when n is large a silicon network spans over the carbon segregation region

    Single-shot Positron Annihilation Lifetime Spectroscopy Using a Liquid Scintillator

    Get PDF
    Liquid scintillators provide a fast, single component response. However, they traditionally have a low flashpoint and high vapor pressure. We demonstrate the use of an EJ-309 scintillator (high flashpoint and low vapor pressure variant) to acquire single-shot positron annihilation lifetime spectroscopy spectra using a trap-based positron beam

    Semiconductor Color-center Structure and Excitation Spectra: Equation-of-motion Coupled-cluster Description of Vacancy and Transition-metal Defect Photoluminescence

    Get PDF
    Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered. Abstract ©2018 American Physical Societ
    corecore