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ABSTRACT
Liquid scintillators provide a fast, single component response. However, they traditionally have a low flashpoint and high vapor pressure. We
demonstrate the use of an EJ-309 scintillator (high flashpoint and low vapor pressure variant) to acquire single-shot positron annihilation
lifetime spectroscopy spectra using a trap-based positron beam.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0048366

INTRODUCTION

Positronium (Ps) is a hydrogenic atom consisting of an
antimatter–matter bound state of electronic leptons. The Ps atom is
unstable to annihilation with the lifetime dependent on the spin state
of the atom (e.g., the ground state: 1S or p-Ps, 125 ps; 3S or o-Ps, 142
ns). The photons produced in the annihilation process encode ener-
getic (Doppler broadening) and spin dependent (polarization) infor-
mation about the electronic environment of the positron. In studies
of materials, a variety of techniques are used to obtain atomic-level
information via these photons.

Perhaps the most well-known positron annihilation spec-
troscopy (PAS) technique is positron annihilation lifetime spec-
troscopy (PALS). Typically, a radioisotope source, such as 22Na, is
used to provide energetic positrons (∼250 keV), which samples the
bulk of a condensed phase material at depths of tens of microme-
ters. More recently, beam-based PALS techniques have been devel-
oped,1,2 allowing the depth at which positrons are implanted to be
varied by varying the kinetic energy of the beam.

Single-shot lifetime spectroscopy, or Single-Shot Positron
Annihilation Lifetime Spectroscopy (SSPALS), is a beam-based tech-
nique in which an ensemble or a pulse of positrons is injected into
a material to produce PALS spectra in one shot, or pulse, of the
positron beam. SSPALS was enabled by the development of Surko-
style trap-based pulsed positron beams,3 the subsequent develop-
ment of intense beams, which included the use of an accumulator,4

and the development of fast scintillators.5,6 Intense positron beam
technology allowed the production of dense clouds of Ps atoms in
vacuum7 and the subsequent work in positronium laser physics.8,9

While positron accumulators and fast scintillating detectors were
used in early investigations, SSPALS has been demonstrated without
the need for an accumulator or a fast scintillator when investigating
vacuum o-Ps.10

A key aspect of the optimization of a trap-based positron beam
is tailoring the temporal character of the beam pulse. Techniques
have been developed to bunch continuous beams,11,12 but a trap-
based beam is typically easier to implement, not requiring tuned RF
circuits (e.g., RF buncher). The ejection of positrons from a buffer-
gas trap (BGT) can be adjusted to minimize the temporal width of
the positron ensemble at a target.2,13 A typical Surko-style buffer-gas
trap can generate positron pulses on a target on the order of tens of
nanoseconds without the need for external bunching,13 as used in
this study.

The SSPALS technique can be applied to a range of materials
studies in which the lifetime spectrum provides useful information
about atomic-level materials properties: mono- and di-vacancies,
dislocations, voids, etc. However, this requires both the temporal
width of the positron beam and the response of the scintillator to
be sufficiently fast. Typically, decay times are longer than the char-
acteristic lifetimes associated with these processes requiring other
techniques.2 SSPALS is particularly useful in materials where the
o-Ps (3S) state is converted to the p-Ps (1S) state by electron
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exchange, resulting in positron lifetimes on the order of tens of
nanoseconds. In the case of surface studies, the measurement of
the vacuum o-Ps lifetime (142 ns) indicates the emission of Ps
from the materials surface. An energy-tunable trap-based positron
beam coupled with a fast, single-component detector can provide
atomic-level defect information throughout the near-surface (tens of
micrometers) volume. Lifetimes of positrons associated with small
defects (few nanometers) are less than 1 ns, requiring fast single
component scintillators and fast photon detectors for unambiguous
identification of defect type.

Liquid scintillators are typically characterized by high flamma-
bility and fast scintillation response time with the ability to be used
for fast pulse shape discrimination and can have minimum long
lifetime afterglow. EJ-309 was developed as a low-flammable alter-
native to EJ-301. Its pulse shape characteristics provide the ability to
distinguish neutrons and gamma rays even in high gamma-ray envi-
ronments.14,15 More recently, EJ-309 has been used for traditional or
bulk PALS measurements.16,17 We demonstrate the use of the EJ-309
scintillator for SSPALS and comment on its use in mixed radiation
environments.

EXPERIMENTAL METHOD

The positron beam line at the Air Force Institute of Technology
(AFIT) was obtained from First Point Scientific, Inc. It consists of a
rare gas moderator (RGM) source stage and a Surko-style buffer-
gas trap (BGT). A sealed sodium-22 (22Na) source with an activity
of 4 mCi was used to provide energetic positrons. The RGM used
neon to grow a moderator (neon ice) at 8.2 K. Moderated positrons
were magnetically guided from the RGM source (125 G) to the BGT
(650 G) where they were trapped, compressed, and cooled to room
temperature.18 Trapping occurs in the first stage of the trap via
inelastic (electronic excitation) collisions with molecular nitrogen
(N2). Cooling occurs via inelastic collisions (ro-vibrational excita-
tion) with sulfur hexafluoride (SF6). The rotating-wall technique
was used to compress the positron cloud radially.19 Positrons were
ejected from the trap by dropping the last, or gate, electrode of the
trap. The pulse of positrons ejected from the trap was magnetically
guided to a gate valve (SS316) used as a beam stop. The annihilation
radiation was detected using a 3 in. diameter EJ-309 (510-30 × 30-5)
and a 1 in. diameter EJ-309 (510-10 × 10-5) scintillator affixed to a
3 in. photomultiplier tube (PMT) (ET-9821B) operating at −1.5 kV
and a 1 in. PMT operating at −1 kV, respectively. The output of these
detectors was digitized using a Tektronix DPO7104 Digital Phos-
phor Oscilloscope (4 channel, 1 GHz bandwidth, 5 GS/s) with the
trigger signal provided by the trap control electronics. SSPALS spec-
tra were accumulated on the oscilloscope before being transferred to
a computer for analysis.

RESULTS AND DISCUSSION

We acquired SSPALS spectra from our positron beam incident
on a 4 1/2 in. conflat gate valve constructed from stainless steel (SS)
shown in Fig. 1. Both 1 and 3 in. diameter EJ-309 detector assem-
blies were used to acquire SSPALS spectra simultaneously. These
detectors were mounted about the gate valve to maximize the solid
angle of the interaction region or approximately the centerline of the
positing beam and the center of the conflat gate valve (see Fig. 1).

FIG. 1. Diagram of the detector geometry with respect to the positron beam (red
arrow), the positronium atoms (blue arrows), and the apparatus.

The results are shown in Figs. 2 and 3 for the 1 and 3 in. detectors,
respectively, and are fit using a number of exponentially modified
Gaussians (EMG) as discussed below. The results obtained using the
3 in. EJ-309 detector show a shoulder delayed from the peak by ∼80
ns. This feature is consistent with the production of Ps atoms at the
surface of the gate valve with sufficient kinetic energy to travel to the
chamber wall and annihilate.20 This feature is not obvious in the 1

FIG. 2. SSPALS spectra using a 1 in. EJ-309 liquid scintillator. The black solid line
is the measured data, the red solid line is the fit composed of three components,
the blue dotted line is the prompt component, the green dashed line is the delayed
component, the magenta dotted-dashed line is the o-Ps vacuum lifetime (142 ns),
and the black dashed line is a constant background. See the text for discussion of
the spectra.
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FIG. 3. SSPALS spectra using a 3 in. EJ-309 liquid scintillator. The black solid line
is the measured data, the red solid line is the fit composed of three components,
the blue dotted line is the prompt component, the green dashed line is the delayed
component, the magenta dotted-dashed line is the o-Ps vacuum lifetime (142 ns),
and the black dashed line is a constant background. See text for discussion of the
spectra.

in. EJ-309 detector due to a greatly reduced solid angle to annihila-
tion events occurring upstream of the gate valve upon the chamber
wall.

The spectrum was fit with a function composed of exponen-
tially modified Gaussians (EMG) of the form

f (h, σ, τ, μ; x) = hσ
τ
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where h is the height or amplitude, σ is the Gaussian width, τ is the
exponential decay constant, and μ is the mean of the distribution.
Three of these functions are combined with a constant background

as follows:
F = fP + fD + fo−Ps + C,

where fP is the prompt component, fD is the delayed component,
fo−Ps is the component due to the decay of fo−Ps in vacuum, and
C is the constant background. The prompt peak, fP, is a convolu-
tion of the detector response consisting of the scintillator and the
photomultiplier decay time and positron lifetimes on, or below, that
order (e.g., para-Ps, pickoff). The delayed component, fD, is due
to any o-Ps that strikes the surface of the chamber and converts
to p-Ps.20 The tail or fo−Ps component is fixed at the o-Ps lifetime
or 142 ns. The fit parameters and associated uncertainties are listed
in Tables I and II.

The advantage of liquid, and plastic, scintillators is their sin-
gle component response when considered for use in acquiring a
SSPALS measurement. This is in contrast to the response of inor-
ganic crystal scintillators such as BaF2;21 see Table III for a compari-
son of various scintillators.22–36 Suppression of the slow component
of the BaF2 fluorescence was investigated5 and a fast detector based
on Cherenkov radiation in a lead fluoride (PbF2) crystal6 but lead
tungstate (PbWO4) is typically used.7 However, lead tungstate is not
a single component scintillator but has many slow components that
can be suppressed via doping (see Ref. 30 and references therein).
These components are significantly smaller in amplitude than the
slow component in BaF2, which allows PbWO4 to be successfully
used for SSPALS1 when only the fraction of vacuum o-Ps is required
typically in laser exaction of o-Ps experiments.

The other criterion for choosing PbWO4 as a scintillator for
SSPALS is its low light output.6,7 This is particularly true for sys-
tems in which large numbers of annihilation events occur, leading
to saturation of the PMT. This is particularly true when a positron
accumulator or a strong source (≥50 mCi) is used. When a low-
intensity source is used (e.g., <10 mCi) without an accumulator,
scintillators with higher light output can be used without saturation
of the PMT while maintaining a useful solid angle or higher repe-
tition rates can be used. SSPALS has been demonstrated using an
lutetium yttrium oxyorthosilicate (LYSO) scintillator,10 which has

TABLE I. Fit results for the 1 in. EJ-309 SSPALS spectrum shown in Fig. 1. The o-Ps lifetime, in bold-face, is fixed.

Prompt Delayed o-Ps

h (arb. units) 1.0236 ± 0.0046 0.8386 ± 0.0056 0.7885 ± 0.0100
τ (ns) 12.8379 ± 0.0694 58.2456 ± 0.5554 142
σ (ns) 11.3883 ± 0.0333 8.8798 ± 0.0399 5.6224 ± 0.0614
μ (ns) 162.4672 ± 0.0344 150.2082 ± 0.1295 191.6812 ± 0.0782

TABLE II. Fit results for the 3 in. EJ-309 SSPALS spectrum shown in Fig. 2. The o-Ps lifetime, in bold-face, is fixed.

Prompt Delayed o-Ps

h (arb. units) 1.3754 ± 0.0020 0.1354 ± 0.0010 1.7145 ± 0.0072
τ (ns) 21.8213 ± 0.0371 36.9062 ± 0.2779 142
σ (ns) 12.1052 ± 0.0106 15.1065 ± 0.0955 5.3893 ± 0.0239
μ (ns) 189.9908 ± 0.0113 260.2338 ± 0.0812 177.2024 ± 0.0356
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TABLE III. List of scintillating materials and their timing parameters. Scintillators listed
in parenthesis are equivalent materials.

Scintillator Phase Decay time (ns) References

NaI(Tl) Crystal 250 23
BGO Crystal 300 25
LYSO Crystal 45 24
PdWO4 Crystal 1–50, 100, 500 31, 35, and 36
BaF2 Crystal 0.6, 630 26
LaBr3:Ce Crystal 63 22
BC-408 (EJ-200) Plastic 2.1 27
BC-412 (EJ-208) Plastic 3.3 27
BC-418 (EJ-228) Plastic 1.4 34
BC-420 (EJ-230) Plastic 1.5 34
BC-422a (EJ-232a) Plastic 1.6 34
EJ-309 Liquid 3.5 37
EJ-276 Plastic 13, 35, 270 32
aQuenched versions of BC-422(BC-422Q), EJ-232 (EJ-232Q), provide faster decay
times.28,33

a significantly higher light output and longer decay time but only
contains a single component.

The EJ-309 liquid scintillator was developed by Eljen Technolo-
gies as a replacement for EJ-301, a xylene based liquid scintillator
with a low flash point (26 C) and high vapor pressure (6 T at 20 C). It
is typically used for fast neutron spectroscopy and is similar to NE-
213. The advantage of EJ-309 is primarily safety as it has a higher
flash point (144 C) and a significantly reduced vapor pressure (0.002
T at 20 C).37 The EJ-309’s sensitivity to annihilation gamma rays and
fast decay time allow it be used as a detector for SSPALS.

Liquid scintillators allow exotic geometries to be more easily
fabricated than plastic or crystal scintillators. However, liquid scin-
tillators are not vacuum compatible, and thus, compatible plastic
scintillators are typically used.38 The recent demonstration of 3D
printable scintillators29 is a novel approach allowing an arbitrary
geometry to be formed. Both 3D printed and liquid scintillators are
useful in circumstances requiring a continuous scintillation material
about a legacy device, which cannot be mechanically modified or dis-
assembled and where machining is cumbersome. Liquid scintillators
provide additional options in the development of instruments for
the acquisition of PALS spectra using a tailored positron beam and
BGT-based and RF-bunched positron beams. The ultimate timing
resolution of the SSPALS implementation is then found to be lim-
ited by the timing jitter of the buncher, scintillator, photodetector
(PMT), and digital acquisition system bandwidth.

The other advantage of fast liquid scintillators is their pulse
shape characteristics.14,39 This would allow the operation of beam-
based PALS techniques, such as SSPALS, to be performed in a range
of environments, e.g., nuclear reactors, to monitor materials degra-
dation in situ. The utility of PAS techniques to detect defects in
nuclear and irradiated materials has been recently reviewed.40

CONCLUSIONS

A liquid scintillator (EJ-309) was used to implement Single-
Shot Positron Annihilation Spectroscopy (SSPALS) using a buffer
gas trap-based positron beam. This demonstration of the SSPALS

technique using a liquid scintillator with lower volatility highlights
the possibility of using it in new experimental geometries difficult to
implement those traditionally used. The fast decay time and single
component nature of the liquid scintillator provide superior perfor-
mance over LYSO in many applications of the SSPALS technique.
The pulse shape characteristics allow its use in reactor environments
that have a neutron background.
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