The closo-Si\u3csub\u3e12\u3c/sub\u3eC\u3csub\u3e12\u3c/sub\u3e Molecule from Cluster to Crystal: A Theoretical Prediction

Abstract

The structure of closo-Si12C12 is unique among stable SinCm isomers (n, m \u3e 4) because of its high symmetry, π–π stacking of C6 rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si12C12 molecules through Si–Si bonds at unsaturated Si atoms. As a result the closo-Si12C12 molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer without large distortion of the monomer structure. 3D crystals are formed by stacking 2D structures in the Z direction, preserving registry of C6 rings in monomer moiety

    Similar works