39 research outputs found
Recommended from our members
The influence of light intensity on growth and chlorophyll in arctic, subarctic, and alpine populations of Deschampsia caespitosa and Trisetum spicatum
Gecorrigeerd via dispense
An Arctic ecosystem : the coastal tundra at Barrow, Alaska
From the Foreward: This book is one of a series of volumes reporting results of research by
U. S. scientists participating in the International Biological Program
(IBP). As one of the 58 nations taking part in the IBP during the period
July 1967 to June 1974 , the United States organized a number of large,
multidisciplinary studies pertinent to the central IBP theme of "the biological
basis of productivity and human welfare."Direct financial support of the Biome-wide
program was derived from three major sources: the National Science
Foundation, the State of Alaska and the petroleum industry through the
University of Alaska. The NSF funding was under the joint sponsorship
of the U. S. Arctic Research Program (Division of Polar Programs) and
the U. S. International Biological Program (Ecosystem Analysis). The
Army Research Office and the Department of Energy (previously AEC
and ERDA) both contributed funded projects to the Program. Industry
support was provided through unrestricted grants from: Atlantic Richfield
Company, Alyeska Pipeline Service Company, BP Alaska, Inc.
Cities Service Company, Exxon Company, USA (Humble Oil and Refining
Company), Gulf Oil Corporation , Marathon Oil Company, Mobil
Oil Company, Prudhoe Bay Environmental Subcommittee of the Alaska
Oil and Gas Association, Shell Oil Company, Standard Oil Company of
California, Standard Oil (Indiana) Foundation Inc., and Sun Oil Company
Estimating seasonal evapotranspiration from temporal satellite images
Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P\u3e0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P[0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic splin
Estimating seasonal evapotranspiration from temporal satellite images
Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P\u3e0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P[0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic splin
Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem
The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes ( Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2= 0.79, n = 66, P \u3c 0.0001). Inclusion of evapotranspiration in the predictive equation led to improved predictions of Fday (R2= 0.82, n = 66, P \u3c 0.0001). Cross-validation indicated that regression tree predictions of Fday were prone to overfitting and that linear regression models were more robust. Multiple regression and regression tree models predicted Rn quite well (R2 = 0.75–0.77, n = 66) with the regression tree model being slightly more robust in cross-validation. Temporal mapping of Fday and Rn is possible with these techniques and would allow the assessment of NEE in sagebrush–steppe ecosystems. Simulations of periodic Fday measurements, as might be provided by a mobile flux tower, indicated that such measurements could be used in combination with iNDVI to accurately predict Fday. These periodic measurements could maximize the utility of expensive flux towers for evaluating various carbon management strategies, carbon certification, and validation and calibration of carbon flux models
An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin
© 2007 Tan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens