80 research outputs found

    Contrasting responses of non-small cell lung cancer to antiangiogenic therapies depend on histological subtype

    Get PDF
    The vascular endothelial growth factor (VEGF) pathway is a clinically validated antiangiogenic target for non-small cell lung cancer (NSCLC). However, some contradictory results have been reported on the biological effects of antiangiogenic drugs. In order to evaluate the efficacy of these drugs in NSCLC histological subtypes, we analyzed the anticancer effect of two anti-VEGFR2 therapies (sunitinib and DC101) in chemically induced mouse models and tumorgrafts of lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC). Antiangiogenic treatments induced vascular trimming in both histological subtypes. In ADC tumors, vascular trimming was accompanied by tumor stabilization. In contrast, in SCC tumors, antiangiogenic therapy was associated with disease progression and induction of tumor proliferation. Moreover, in SCC, anti-VEGFR2 therapies increased the expression of stem cell markers such as aldehyde dehydrogenase 1A1, CD133, and CD15, independently of intratumoral hypoxia. In vitro studies with ADC cell lines revealed that antiangiogenic treatments reduced pAKT and pERK signaling and inhibited proliferation, while in SCC-derived cell lines the same treatments increased pAKT and pERK, and induced survival. In conclusion, this study evaluates for the first time the effect of antiangiogenic drugs in lung SCC murine models in vivo and sheds light on the contradictory results of antiangiogenic therapies in NSCLC

    Chromosome banding analysis and genomic microarrays are both useful but not equivalent methods for genomic complexity risk stratification in chronic lymphocytic leukemia patients

    Get PDF
    Chromosome banding; Chronic lymphocytic leukemia patientsBandas cromosómicas; Leucemia linfocítica crónicaBandes cromosòmiques; Leucèmia limfocítica crònicaGenome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and ≥5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (κ=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57). High complexity maintained its significance in the multivariate analysis for TTFT including TP53 and IGHV status when defined by CBA (hazard ratio [HR] 3.23; P<0.001) and GM (HR 2.74; P<0.001). Our findings suggest that both methods are useful but not equivalent for risk stratification of CLL patients. Validation studies are needed to establish the prognostic value of genome complexity based on GM data in future prospective studies

    t(10;16)(q22;p13) and MORF-CREBBP fusion is a recurrent event in acute myeloid leukemia

    Get PDF
    Recently, it was shown that t(10;16)(q22;p13) fuses the MORF and CREBBP genes in a case of childhood acute myeloid leukemia (AML) M5a, with a complex karyotype containing other rearrangements. Here, we report a new case with the MORF-CREBBP fusion in an 84-year-old patient diagnosed with AML M5b, in which the t(10;16)(q22;p13) was the only cytogenetic aberration. This supports that this is a recurrent pathogenic translocation in AML

    NIN, a gene encoding a CEP110-like centrosomal protein, is fused to PDGFRB in a patient with a t(5;14)(q33;q24) and an imatinib-responsive myeloproliferative disorder

    Get PDF
    We describe a new PDGFRB fusion associated with a t(5;14)(q33;q24) in a patient with a longstanding chronic myeloproliferative disorder with eosinophilia. After confirmation of PDGFRB involvement and definition of the chromosome 14 breakpoint by fluorescence in situ hybridization, candidate partner genes were selected on the basis of the presence of predicted oligomerization domains believed to be an essential feature of tyrosine kinase fusion proteins. We demonstrate that the t(5;14) fuses PDGFRB to NIN, a gene encoding a centrosomal protein with CEP110-like function. After treatment with imatinib, the patient achieved hematological and cytogenetical remission, but NIN-PDGFRB mRNA remained detectable by reverse transcription-PCR

    Role of the human concentrative nucleoside transporter (hCNT1) in the cytotoxic action of 5[Prime]-deoxy-5-fluorouridine, an active intermediate metabolite of capecitabine, a novel oral anticancer drug.

    Get PDF
    We attempt to identify the plasma membrane transporter involved in the uptake of 5'-deoxy-5-fluorouridine (5'-DFUR), an intermediate metabolite of capecitabine. This novel oral fluoropyrimidine is used in cancer treatments and is a direct precursor of the cytostatic agent 5'-fluorouracil. We also examine the role of the transporter in 5'-DFUR cytotoxicity. The human concentrative nucleoside transporter (hCNT1) was cloned from human fetal liver and expressed in Xenopus laevis oocytes. The two-electrode voltage-clamp technique was used to demonstrate that 5'-DFUR, but not capecitabine or 5'-FU, is an hCNT1 substrate. Then, hCNT1 was heterologously expressed in the mammalian cell line Chinese hamster ovary-K1. Functional expression was demonstrated by monitoring transport of radiolabeled substrates and by using a monospecific polyclonal antibody generated against the transporter. hCNT1-expressing cells were more sensitive to 5'-DFUR than vector-transfected or wild-type cells. The sensitivity of the three cell types to other agents such as cisplatin or 5'-FU was identical. In conclusion, this study shows that 1) the pharmacological profile of a nucleoside transporter can be determined by an electrophysiological approach; 2) the hCNT1 transporter is involved in 5'-DFUR uptake; and 3) hCNT1 expression may increase cell sensitivity to 5'-DFUR treatment. This study also reports for the first time the generation of an antibody against hCNT1, which may be useful in the elucidation of the relationship between hCNT1 expression and tumor response to capecitabine treatmen
    • …
    corecore