539 research outputs found

    Showcasing a Barren Plateau Theory Beyond the Dynamical Lie Algebra

    Full text link
    Barren plateaus have emerged as a pivotal challenge for variational quantum computing. Our understanding of this phenomenon underwent a transformative shift with the recent introduction of a Lie algebraic theory capable of explaining most sources of barren plateaus. However, this theory requires either initial states or observables that lie in the circuit's Lie algebra. Focusing on parametrized matchgate circuits, in this work we are able to go beyond this assumption and provide an exact formula for the loss function variance that is valid for arbitrary input states and measurements. Our results reveal that new phenomena emerge when the Lie algebra constraint is relaxed. For instance, we find that the variance does not necessarily vanish inversely with the Lie algebra's dimension. Instead, this measure of expressiveness is replaced by a generalized expressiveness quantity: The dimension of the Lie group modules. By characterizing the operators in these modules as products of Majorana operators, we can introduce a precise notion of generalized globality and show that measuring generalized-global operators leads to barren plateaus. Our work also provides operational meaning to the generalized entanglement as we connect it with known fermionic entanglement measures, and show that it satisfies a monogamy relation. Finally, while parameterized matchgate circuits are not efficiently simulable in general, our results suggest that the structure allowing for trainability may also lead to classical simulability.Comment: 5+26 pages, 2+1 figure

    Current and Emerging Pharmacotherapies for Primary CNS Lymphoma

    Get PDF
    Primary central nervous system lymphoma (PCNSL) constitutes a rare group of extranodal non-Hodgkin’s lymphoma (NHL) primarily of B cell origin. It occurs in both immuno-competent and immune-compromised patients. High dose m ethotrexate (HD-MTX) based chemotherapy is the standard therapy. Chemotherapy with whole brain radiation therapy (WBRT) improves response rates and survival compared with WBRT alone. However, due to the increased risk for neurotoxicity with WBRT, recent studies have focused on using chemotherapy alone. Methotrexate based multi-agent chemotherapy without WBRT is associated with similar t reatment rates and survival compared with regimens that include WBRT although controlled trials have not been performed. Because of the low incidence of this disease, it is difficult to conduct randomized controlled trials. In this article we have discussed about the past, present and emerging treatment options in patients with PCNSL

    Parallel-in-time quantum simulation via Page and Wootters quantum time

    Full text link
    In the past few decades, researchers have created a veritable zoo of quantum algorithm by drawing inspiration from classical computing, information theory, and even from physical phenomena. Here we present quantum algorithms for parallel-in-time simulations that are inspired by the Page and Wooters formalism. In this framework, and thus in our algorithms, the classical time-variable of quantum mechanics is promoted to the quantum realm by introducing a Hilbert space of "clock" qubits which are then entangled with the "system" qubits. We show that our algorithms can compute temporal properties over NN different times of many-body systems by only using log(N)\log(N) clock qubits. As such, we achieve an exponential trade-off between time and spatial complexities. In addition, we rigorously prove that the entanglement created between the system qubits and the clock qubits has operational meaning, as it encodes valuable information about the system's dynamics. We also provide a circuit depth estimation of all the protocols, showing an exponential advantage in computation times over traditional sequential in time algorithms. In particular, for the case when the dynamics are determined by the Aubry-Andre model, we present a hybrid method for which our algorithms have a depth that only scales as O(log(N)n)\mathcal{O}(\log(N)n). As a by product we can relate the previous schemes to the problem of equilibration of an isolated quantum system, thus indicating that our framework enable a new dimension for studying dynamical properties of many-body systems.Comment: 19+15 pages, 18+1 figure

    Fertilizer Potential of Organic-Based Soil Amendments on cv. Sangiovese (V. vinifera L.) Vines: Preliminary Results

    Get PDF
    The intensification of highly specialized viticulture has led to a dramatic decrease of soil fertility that can be restored by increasing soil organic matter using organic fertilizers. The aim of the present experiment was to evaluate the effect of different organic amendments on vine vegetative growth and nutritional status, soil N availability and microbial biomass, as well as on yield and grape quality. The experiment was carried out in 2020 and 2021, on cv. Sangiovese (Vitis vinifera L.) vines grafted on 110 Richter (V. berlandieri × V. rupestris) planted in February 2019. Plants were fer-tilized yearly in spring with (1) mineral fertilization (MIN), (2) municipal organic waste compost (MOW), and (3) sewage sludge compost (SS). The application of SS increased nitrate availability in both years, while the supply of organic matter (no matter the source) enhanced soil microbial bio-mass content. Plant nutritional status was in the optimal range for all treatments, with an increase of N in SS and K in MOW. Fruit yield in 2020 was not influenced by treatments, while in 2021 it was enhanced by MIN and MOW, which also induced a higher berry quality. Plant vegetative growth was stimulated by the application of SS. In conclusion, from these preliminary results we observed a higher N availability as a consequence of SS supply that resulted in a higher plant biomass, but reduced yield and berry quality, supporting the theory that for vineyards, N should be carefully managed to reach an equilibrium between vegetative and reproductive activity

    Space Flight Qualification on a Multi-Fiber Ribbon Cable and Array Connector Assembly

    Get PDF
    NASA's Goddard Space Flight Center (GSFC) cooperatively with Sandia National Laboratories completed a series of tests on three separate configurations of multi-fiber ribbon cable and MTP connector assemblies. These tests simulate the aging process of components during launch and long-term space environmental exposure. The multi-fiber ribbon cable assembly was constructed of non-outgassing materials, with radiation-hardened, graded index 100/140-micron optical fiber. The results of this characterization presented here include vibration testing, thermal vacuum monitoring, and extended radiation exposure testing data

    Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group.

    Get PDF
    Cancer immunotherapy has transformed the treatment of cancer. However, increasing use of immune-based therapies, including the widely used class of agents known as immune checkpoint inhibitors, has exposed a discrete group of immune-related adverse events (irAEs). Many of these are driven by the same immunologic mechanisms responsible for the drugs\u27 therapeutic effects, namely blockade of inhibitory mechanisms that suppress the immune system and protect body tissues from an unconstrained acute or chronic immune response. Skin, gut, endocrine, lung and musculoskeletal irAEs are relatively common, whereas cardiovascular, hematologic, renal, neurologic and ophthalmologic irAEs occur much less frequently. The majority of irAEs are mild to moderate in severity; however, serious and occasionally life-threatening irAEs are reported in the literature, and treatment-related deaths occur in up to 2% of patients, varying by ICI. Immunotherapy-related irAEs typically have a delayed onset and prolonged duration compared to adverse events from chemotherapy, and effective management depends on early recognition and prompt intervention with immune suppression and/or immunomodulatory strategies. There is an urgent need for multidisciplinary guidance reflecting broad-based perspectives on how to recognize, report and manage organ-specific toxicities until evidence-based data are available to inform clinical decision-making. The Society for Immunotherapy of Cancer (SITC) established a multidisciplinary Toxicity Management Working Group, which met for a full-day workshop to develop recommendations to standardize management of irAEs. Here we present their consensus recommendations on managing toxicities associated with immune checkpoint inhibitor therapy
    corecore