7,549 research outputs found

    Magnetoconductivity of low-dimensional disordered conductors at the onset of the superconducting transition

    Full text link
    Magnetoconductivity of the disordered two- and three-dimensional superconductors is addressed at the onset of superconducting transition. In this regime transport is dominated by the fluctuation effects and we account for the interaction corrections coming from the Cooper channel. In contrast to many previous studies we consider strong magnetic fields and various temperature regimes, which allow to resolve the existing discrepancies with the experiments. Specifically, we find saturation of the fluctuations induced magneto-conductivity for both two- and three-dimensional superconductors at already moderate magnetic fields and discuss possible dimensional crossover at the immediate vicinity of the critical temperature. The surprising observation is that closer to the transition temperature weaker magnetic field provides the saturation. It is remarkable also that interaction correction to magnetoconductivity coming from the Cooper channel, and specifically the so called Maki-Thompson contribution, remains to be important even away from the critical region.Comment: 4 pages, 1 figur

    A constrained random-force model for weakly bending semiflexible polymers

    Full text link
    The random-force (Larkin) model of a directed elastic string subject to quenched random forces in the transverse directions has been a paradigm in the statistical physics of disordered systems. In this brief note, we investigate a modified version of the above model where the total transverse force along the polymer contour and the related total torque, in each realization of disorder, vanish. We discuss the merits of adding these constraints and show that they leave the qualitative behavior in the strong stretching regime unchanged, but they reduce the effects of the random force by significant numerical prefactors. We also show that a transverse random force effectively makes the filament softer to compression by inducing undulations. We calculate the related linear compression coefficient in both the usual and the constrained random force model.Comment: 4 pages, 1 figure, accepted for publication in PR

    Thermal conductivity in a mixed state of a superconductor at low magnetic fields

    Get PDF
    We evaluate accurate low-field/low-temperature asymptotics of the thermal conductivity perpendicular to magnetic field for one-band and two-band s-wave superconductors using Keldysh-Usadel formalism. We show that heat transport in this regime is limited by tunneling of quasiparticles between adjacent vortices across a number of local points and therefore widely-used approximation of averaging over circular unit cell is not valid. In the single-band case, we obtain parameter-free analytical solution which provides theoretical lower limit for heat transport in the mixed state. In the two-band case, we show that heat transport is controlled by the ratio of gaps and diffusion constants in different bands. Presence of a weaker second band strongly enhances the thermal conductivity at low fieldsComment: 7 pages, 1 figure, discussion of the clean case and discussion of experiment adde

    Two-bands effect on the superconducting fluctuating diamagnetism in MgB&#8322

    Full text link
    The field dependence of the magnetization above the transition temperature Tc in MgB₂ is shown to evidence a diamagnetic contribution consistent with superconducting fluctuations reflecting both the σ and π bands. In particular, the upturn field Hup in the magnetization curve, related to the incipient effect of the magnetic field in quenching the fluctuating pairs, displays a double structure, in correspondence to two correlation lengths. The experimental findings are satisfactorily described by the extension to the diamagnetism of a recent theory for paraconductivity, in the framework of a zero-dimensional model for the fluctuating superconducting droplets above Tc

    Suppression or enhancement of the Fulde-Ferrell-Larkin-Ovchinnikov order in a one-dimensional optical lattice with particle correlated tunnelling

    Full text link
    We study through controlled numerical simulation the ground state properties of spin-polarized strongly interacting fermi gas in an anisotropic optical lattice, which is described by an effective one-dimensional general Hubbard model with particle correlated hopping rate. We show that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type of state, while enhanced by a negative correlated hopping rate, can be completely suppressed by positive particle correlated hopping, yielding to an unusual magnetic phase even for particles with on-site attractive interaction We also find several different phase separation patterns for these atoms in an inhomogeneous harmonic trap, depending on the correlated hopping rate

    Electrodynamics of Fulde-Ferrell-Larkin-Ovchinnikov superconducting state

    Full text link
    We develop the Ginzburg-Landau theory of the vortex lattice in clean isotropic three-dimensional superconductors at large Maki parameter, when inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov state is favored. We show that diamagnetic superfluid currents mainly come from paramagnetic interaction of electron spins with local magnetic field, and not from kinetic energy response to the external field as usual. We find that the stable vortex lattice keeps its triangular structure as in usual Abrikosov mixed state, while the internal magnetic field acquires components perpendicular to applied magnetic field. Experimental possibilities related to this prediction are discussed.Comment: 5 pages, 1 figur

    Fluctuoscopy of Disordered Two-Dimensional Superconductors

    Full text link
    We revise the long studied problem of fluctuation conductivity (FC) in disordered two-dimensional superconductors placed in a perpendicular magnetic field by finally deriving the complete solution in the temperature-magnetic field phase diagram. The obtained expressions allow both to perform straightforward (numerical) calculation of the FC surface δσxx(tot)(T,H)\delta\sigma_{xx}^{(\mathrm{tot})}(T,H) and to get asymptotic expressions in all its qualitatively different domains. This surface becomes in particular non-trivial at low temperatures, where it is trough-shaped with δσxx(tot)(T,H)<0% \delta\sigma_{xx}^{(\mathrm{tot})}(T,H)<0. In this region, close to the quantum phase transition, δσxx(tot)(T,H=const)\delta\sigma_{xx}^{(\mathrm{tot})}(T,H=\mathrm{const}) is non-monotonic, in agreement with experimental findings. We reanalyzed and present comparisons to several experimental measurements. Based on our results we derive a qualitative picture of superconducting fluctuations close to Hc2(0)H_{\mathrm{c2}}(0) and T=0 where fluctuation Cooper pairs rotate with cyclotron frequency ωcΔBCS1\omega_{c}\sim\Delta_{\mathrm{BCS}}^{-1} and Larmor radius ξBCS\sim \xi_{\mathrm{BCS}}, forming some kind of quantum liquid with long coherence length ξQFξBCS\xi_{\mathrm{QF}}\gg\xi_{\mathrm{BCS}} and slow relaxation (τQFΔBCS1\tau_{\mathrm{QF}}\gg\hbar\Delta_{\mathrm{BCS}}^{-1}).Comment: 26 pages, 13 figures, 3 tables, RevTex 4.

    Vortex Viscosity in Magnetic Superconductors Due to Radiation of Spin Waves

    Full text link
    In type-II superconductors that contain a lattice of magnetic moments, vortices polarize the magnetic system inducing additional contributions to the vortex mass, vortex viscosity, and vortex-vortex interaction. Extra magnetic viscosity is caused by radiation of spin waves by a moving vortex. Like in the case of Cherenkov radiation, this effect has a characteristic threshold behavior and the resulting vortex viscosity may be comparable to the well-known Bardeen-Stephen contribution. The threshold behavior leads to an anomaly in the current-voltage characteristics, and a drop in dissipation for a current interval that is determined by the magnetic excitation spectrum.Comment: 4 pages, 1 figur

    Conventional and charge six superfluids from melting hexagonal Fulde-Ferrell-Larkin-Ovchinnikov phases in two dimensions

    Full text link
    We consider defect mediated melting of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and pair density wave (PDW) phases in two dimensions. Examining mean-field ground states in which the spatial oscillations of the FFLO/PDW superfluid order parameter exhibit hexagonal lattice symmetry, we find that thermal melting leads to a variety of novel phases. We find that a spatially homogeneous charge six superfluid can arise from melting a hexagonal vortex-anitvortex lattice FFLO/PDW phase. The charge six superfluid has an order parameter corresponding to a bound state of six fermions. We further find that a hexagonal vortex-free FFLO/PDW phase can melt to yield a conventional (charge two) homogeneous superfluid. A key role is played by topological defects that combine fractional vortices of the superfluid order and fractional dislocations of the lattice order.Comment: 8 pages, 3 figure
    corecore