78 research outputs found

    Identifying V. Cholerae\u27s Autoinducer to Manipulate Its Quorum Sensing

    Get PDF
    • Vibrio cholerae is a gram-negative anaerobic bacteria that inhabits brackish or saltwater areas. • Causative agent of cholera, which results in acute diarrhea and dehydration. • Uses quorum sensing, a cell density dependent method of communicating with other bacteria and regulating its entire lifecycle of infection. (gene expression of functions such as biofilm formation, virulence, and more) • Vibrio cholerae determines bacterial population based on the secretion of several signaling molecules called an autoinducer from others of their kind. • Upon adequate accumulation, they can deactivate their virulence and begin to leave their host’s body to continue infecting other organisms. •The goal of this experiment is to identify the structure of and isolate one of the autoinducer molecules. Current studies suggest there are four chemical inputs in V. cholerae, two are known (Ea-CAI1/CAI-1 circuit and the AI-2 circuit)

    A single dose of metformin improves whole body insulin sensitivity and alters cellular redox state in skeletal muscle of Zucker fa/fa rats

    Get PDF
    Energy balance is considered a fundamental requirement of life forms from single cell organisms to higher mammals such as humans. Unfortunately, our species has also discovered the detrimental metabolic responses to excess dietary intake: obesity and the accompanying pathologies collectively known as the metabolic syndrome. Central to the metabolic syndrome is insulin resistance, defined as a relative failure of insulin to stimulate glucose transport in peripheral tissues such as skeletal muscle. It is generally accepted that prolonged insulin resistance often results in the onset of type 2 diabetes, which is one of the most common diseases in the world. Current treatment for type 2 diabetes generally begins with dimethylbiguanide, an insulin sensitizing drug also known as metformin. In the last 10 years, scientific discovery has identified mitochondrial function as a key player in a variety of metabolic diseases, including insulin resistance and type 2 diabetes. As such, a variety of investigations have been performed in an attempt to indentify [sic] mechanisms by which altered mitochondrial function or physiology may contribute to the pathogenesis of these diseases. Recent evidence from our laboratory indicates that mitochondria derived oxidant (mROS) generation is a key player in the mitochondrial regulation of insulin sensitivity in vivo. Additionally, recent evidence has demonstrated that acute metformin treatment in vitro decreases liver mROS, and that chronic metformin treatment in vivo decreases skeletal muscle mROS concurrent with improvements in whole body glucose tolerance. Together, this evidence indicates that metformin may alter peripheral insulin sensitivity by decreasing the elevated mROS associated with insulin resistance in the obese population. Therefore, the purpose of the current study was to investigate the effects of a single oral dose of metformin on whole body glucose tolerance and mROS in red and white gastrocnemius of Zucker fa/fa rats, a genetically obese animal model. A single oral dose of metformin resulted in improved whole body glucose tolerance compared to controls independent of alterations in serum insulin. Cellular redox state was significantly more oxidized in animals treated with glucose or metformin alone compared to controls or animals which received both treatments. Succinate and palmitoylcarnitine/malate induced mROS was not altered by glucose and/or metformin in red or white gastrocnemius. Mitochondrial respiration with pyruvate/malate or palmitoylcarnitine/malate was unchanged in response to glucose and/or metformin treatment in red or white gastrocnemius. Akt phosphorylation was significantly elevated in both red and white gastrocnemius in response to glucose or metformin alone, but no additive effect was observed when administered simultaneously, indicating that metformin may act as an insulin mimetic in vivo. AMPK phosphorylation was not elevated in response to metformin treatment in either tissue, which suggests that metformin may act through AMPK-independent mechanisms in skeletal muscle in vivo. The results of this study demonstrate that a single oral dose of metformin can improve whole body glucose tolerance independent of changes in mitochondrial respiration, mROS, or altered AMPK signaling in red and white gastrocnemius of Zucker fa/fa rats, but may be associated with altered cellular redox state.  M.S

    Assessing urinary flow rate, creatinine, osmolality and other hydration adjustment methods for urinary biomonitoring using NHANES arsenic, iodine, lead and cadmium data

    Get PDF
    Background There are numerous methods for adjusting measured concentrations of urinary biomarkers for hydration variation. Few studies use objective criteria to quantify the relative performance of these methods. Our aim was to compare the performance of existing methods for adjusting urinary biomarkers for hydration variation. Methods Creatinine, osmolality, excretion rate (ER), bodyweight adjusted ER (ERBW) and empirical analyte-specific urinary flow rate (UFR) adjustment methods on spot urinary concentrations of lead (Pb), cadmium (Cd), non-arsenobetaine arsenic (AsIMM) and iodine (I) from the US National Health and Nutrition Examination Survey (NHANES) (2009–2010 and 2011–2012) were evaluated. The data were divided into a training dataset (n = 1,723) from which empirical adjustment coefficients were derived and a testing dataset (n = 428) on which quantification of the performance of the adjustment methods was done by calculating, primarily, the correlation of the adjusted parameter with UFR, with lower correlations indicating better performance and, secondarily, the correlation of the adjusted parameters with blood analyte concentrations (Pb and Cd), with higher correlations indicating better performance. Results Overall performance across analytes was better for Osmolality and UFR based methods. Excretion rate and ERBW consistently performed worse, often no better than unadjusted concentrations. Conclusions Osmolality adjustment of urinary biomonitoring data provides for more robust adjustment than either creatinine based or ER or ERBW methods, the latter two of which tend to overcompensate for UFR. Modified UFR methods perform significantly better than all but osmolality in removing hydration variation, but depend on the accuracy of UFR calculations. Hydration adjustment performance is analyte-specific and further research is needed to establish a robust and consistent framework

    Integrin-linked kinase in muscle is necessary for the development of insulin resistance in diet-induced obese mice

    Get PDF
    Diet-induced muscle insulin resistance is associated with expansion of extracellular matrix (ECM) components, such as collagens, and the expression of collagen-binding integrin, α2β1. Integrins transduce signals from ECM via their cytoplasmic domains, which bind to intracellular integrin-binding proteins. The integrin-linked kinase (ILK)-PINCH-parvin (IPP) complex interacts with the cytoplasmic domain of β-integrin subunits and is critical for integrin signaling. In this study we defined the role of ILK, a key component of the IPP complex, in diet-induced muscle insulin resistance. Wild-type (ILK(lox/lox)) and muscle-specific ILK-deficient (ILK(lox/lox)HSAcre) mice were fed chow or a high-fat (HF) diet for 16 weeks. Body weight was not different between ILK(lox/lox) and ILK(lox/lox)HSAcre mice. However, HF-fed ILK(lox/lox)HSAcre mice had improved muscle insulin sensitivity relative to HF-fed ILK(lox/lox) mice, as shown by increased rates of glucose infusion, glucose disappearance, and muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. Improved muscle insulin action in the HF-fed ILK(lox/lox)HSAcre mice was associated with increased insulin-stimulated phosphorylation of Akt and increased muscle capillarization. These results suggest that ILK expression in muscle is a critical component of diet-induced insulin resistance, which possibly acts by impairing insulin signaling and insulin perfusion through capillaries

    Looking beyond the exome: a phenotype-first approach to molecular diagnostic resolution in rare and undiagnosed diseases.

    Get PDF
    PurposeTo describe examples of missed pathogenic variants on whole-exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing.MethodsGuided by phenotypic information, three children with negative WES underwent targeted single-gene testing.ResultsIndividual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and a next-generation sequencing (NGS)-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the noncoding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity, and magnetic resonance image changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, probably missed owing to failure of alignment.ConclusionThese cases illustrate potential pitfalls of WES/NGS testing and the importance of phenotype-guided molecular testing in yielding diagnoses

    Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse

    Get PDF
    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(Ë™-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(Ë™-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(Ë™-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging

    Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates.

    Get PDF
    Zika virus (ZIKV) infection is associated with congenital defects and pregnancy loss. Here, we found that 26% of nonhuman primates infected with Asian/American ZIKV in early gestation experienced fetal demise later in pregnancy despite showing few clinical signs of infection. Pregnancy loss due to asymptomatic ZIKV infection may therefore be a common but under-recognized adverse outcome related to maternal ZIKV infection

    Urine selenium concentration is a useful biomarker for assessing population level selenium status

    Get PDF
    Plasma selenium (Se) concentration is an established population level biomarker of Se status, especially in Se-deficient populations. Previously observed correlations between dietary Se intake and urinary Se excretion suggest that urine Se concentration is also a potentially viable biomarker of Se status. However, there are only limited data on urine Se concentration among Se-deficient populations. Here, we test if urine is a viable biomarker for assessing Se status among a large sample of women and children in Malawi, most of whom are likely to be Se-deficient based on plasma Se status. Casual (spot) urine samples (n = 1406) were collected from a nationally representative sample of women of reproductive age (WRA, n =741) and school aged children (SAC, n=665) across Malawi as part of the 2015/16 Demographic and Health Survey. Selenium concentration in urine was determined using inductively coupled plasma mass spectrometry (ICP-MS). Urinary dilution corrections for specific gravity, osmolality, and creatinine were applied to adjust for hydration status. Plasma Se status had been measured for the same survey participants. There was between-cluster variation in urine Se concentration that corresponded with variation in plasma Se concentration, but not between households within a cluster, or between individuals within a household. Corrected urine Se concentrations explained more of the between-cluster variation in plasma Se concentration than uncorrected data. These results provide new evidence that urine may be used in the surveillance of Se status at the population level in some groups. This could be a cost-effective option if urine samples are already being collected for other assessments, such as for iodine status analysis as in the Malawi and other national Demographic and Health Surveys
    • …
    corecore