32 research outputs found

    Zebras of all stripes repel biting flies at close range

    Full text link
    The best-supported hypothesis for why zebras have stripes is that stripes repel biting flies. While this effect is well-established, the mechanism behind it remains elusive. Myriad hypotheses have been suggested, but few experiments have helped narrow the field of possible explanations. In addition, the complex visual features of real zebra pelage and the natural range of stripe widths have been largely left out of experimental designs. In paired-choice field experiments in a Kenyan savannah, we found that hungry Stomoxys flies released in an enclosure strongly preferred to land on uniform tan impala pelts over striped zebra pelts but exhibited no preference between the pelts of the zebra species with the widest stripes and the narrowest stripes. Our findings confirm that zebra stripes repel biting flies under naturalistic conditions and do so at close range (suggesting that several of the mechanisms hypothesized to operate at a distance are unnecessary for the fly-repulsion effect) but indicate that interspecific variation in stripe width is associated with selection pressures other than biting flies

    Leveraging genomics to understand threats in a migratory waterbird

    Get PDF
    Understanding how risk factors affect populations across their annual cycle is a major challenge for conserving migratory birds. For example, disease outbreaks may happen on the breeding grounds, the wintering grounds, or during migration and are expected to accelerate under climate change. The ability to identify the geographic origins of impacted individuals, especially outside of breeding areas, might make it possible to predict demographic trends and inform conservation decision-making. However, such an effort is made more challenging by the degraded state of carcasses and resulting low quality of DNA available. Here, we describe a rapid and low-cost approach for identifying the origins of birds sampled across their annual cycle that is robust even when DNA quality is poor. We illustrate the approach in the common loon (Gavia immer), an iconic migratory aquatic bird that is under increasing threat on both its breeding and wintering areas. Using 300 samples collected from across the breeding range, we develop a panel of 158 single-nucleotide polymorphisms (SNP) loci with divergent allele frequencies across six genetic subpopulations. We use this SNP panel to identify the breeding grounds for 142 live nonbreeding individuals and carcasses. For example, genetic assignment of loons sampled during botulism outbreaks in parts of the Great Lakes provides evidence for the significant role the lakes play as migratory stopover areas for loons that breed across wide swaths of Canada, and highlights the vulnerability of a large segment of the breeding population to botulism outbreaks that are occurring in the Great Lakes with increasing frequency. Our results illustrate that the use of SNP panels to identify breeding origins of carcasses collected during the nonbreeding season can improve our understanding of the population-specific impacts of mortality from disease and anthropogenic stressors, ultimately allowing more effective management.Published versio

    Leveraging genomics to understand threats to migratory birds

    No full text

    Population structure, inbreeding and stripe pattern abnormalities in plains zebras

    No full text
    One of the most iconic wild equids, the plains zebra occupies a broad region of sub-Saharan Africa and exhibits a wide range of phenotypic diversity in stripe patterns that have been used to classify multiple sub-species. After decades of relative stability, albeit with a loss of at least one recognized subspecies, the total population of plains zebras has undergone an approximate 25% decline since 2002. Individuals with abnormal stripe patterns have been recognized in recent years but the extent to which their appearance is related to demography and/or genetics is unclear. Investigating population genetic health and genetic structure are essential for developing effective strategies for plains zebra conservation. We collected DNA from 140 plains zebra, including 7 with abnormal stripe patterns, from 9 locations across the range of plains zebra, and analyzed data from restriction site-associated and whole genome sequencing (RAD-seq, WGS) libraries to better understand the relationships between population structure, genetic diversity, inbreeding, and abnormal phenotypes. We find that genetic structure does not coincide with described subspecific variation, but does distinguish geographic regions in which anthropogenic habitat fragmentation is associated with reduced gene flow and increased evidence of inbreeding, especially in certain parts of East Africa. Further, zebras with abnormal striping exhibited increased levels of inbreeding relative to normally striped individuals from the same populations. Our results point to a genetic cause of stripe pattern abnormalities, and dramatic evidence of the consequences of habitat fragmentation.Details about the samples can be found in Larison et. al 2020. Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Molecular Ecology Funding provided by: National Geographic SocietyCrossref Funder Registry ID: http://dx.doi.org/10.13039/100006363Award Number: 8941-11SNPs were generated from RADseq data created using the restrictioin enzyme SBFI. Processing details can be found in Larison et. al 2020. Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Molecular Ecolog
    corecore