1,857 research outputs found

    On the construction of general solution of the generalized sylvester equation

    Get PDF
    The problem of construction the general solution of the generalized matrix Sylvester equation is considered. Conditions of existence of solution of this equation are obtained and the algorithm for construction of this solution is given. For construction of the algorithm of this solution and the formulation of the condition of existence of this solution, the standard procedures of MATLAB package are used.Publisher's Versio

    The Scientific and Social Activity of Professor N. N. Saltykov in Russia in 1894–1919

    Get PDF
    The scientific and social activity of Professor N. N. Saltykov in Russia in period 1894–1919 is presented

    The order O(αˉ αˉs)O(\bar{\alpha}~\bar{\alpha}_s) and O(αˉ2)O(\bar{\alpha}^2) corrections to the decay width of the neutral Higgs boson to the bˉb\bar{b}b pair

    Full text link
    We present the analytical expressions for the contributions of the order O(αˉ αˉs)O(\bar{\alpha}~\bar{\alpha}_s) and O(αˉ2)O(\bar{\alpha}^2) corrections to the decay width of the Standard Model Higgs boson into the bˉb\bar{b}b-pair. The numerical value of the mixed QED and QCD correction of order O(αˉ αˉs)O(\bar{\alpha}~\bar{\alpha}_s) is comparable with the previously calculated terms in the perturbative series for Γ(H0bˉb)\Gamma(H^0\to\bar{b}b).Comment: LaTeX 5 pages, accepted for publication in Pisma Zh. Eksp. Teor. Fiz. v 66, N5 (1997

    Relating Physical Observables in QCD without Scale-Scheme Ambiguity

    Full text link
    We discuss the St\"uckelberg-Peterman extended renormalization group equations in perturbative QCD, which express the invariance of physical observables under renormalization-scale and scheme-parameter transformations. We introduce a universal coupling function that covers all possible choices of scale and scheme. Any perturbative series in QCD is shown to be equivalent to a particular point in this function. This function can be computed from a set of first-order differential equations involving the extended beta functions. We propose the use of these evolution equations instead of perturbative series for numerical evaluation of physical observables. This formalism is free of scale-scheme ambiguity and allows a reliable error analysis of higher-order corrections. It also provides a precise definition for ΛMS\Lambda_{\overline{\rm MS}} as the pole in the associated 't Hooft scheme. A concrete application to R(e+ehadrons)R(e^+e^- \to {\rm hadrons}) is presented.Comment: Plain TEX, 4 figures (available upon request), 22 pages, DOE/ER/40322-17

    Calculating loops without loop calculations: NLO computation of pentaquark correlators

    Full text link
    We compute next-to-leading order (NLO) perturbative QCD corrections to the correlators of interpolating pentaquark currents. We employ modular techniques in configuration space which saves us from the onus of having to do loop calculations. The modular technique is explained in some detail. We present explicit NLO results for several interpolating pentaquark currents that have been written down in the literature. Our modular approach is easily adapted to the case of NLO corrections to multiquark correlators with an arbitrary number of quarks/antiquarks.Comment: 23 pages, 1 figure, published version. arXiv admin note: text overlap with arXiv:hep-lat/031001

    Recursive Graphical Construction of Feynman Diagrams in phi^4 Theory: Asymmetric Case and Effective Energy

    Get PDF
    The free energy of a multi-component scalar field theory is considered as a functional W[G,J] of the free correlation function G and an external current J. It obeys non-linear functional differential equations which are turned into recursion relations for the connected Greens functions in a loop expansion. These relations amount to a simple proof that W[G,J] generates only connected graphs and can be used to find all such graphs with their combinatoric weights. A Legendre transformation with respect to the external current converts the functional differential equations for the free energy into those for the effective energy Gamma[G,Phi], which is considered as a functional of the free correlation function G and the field expectation Phi. These equations are turned into recursion relations for the one-particle irreducible Greens functions. These relations amount to a simple proof that Gamma[G,J] generates only one-particle irreducible graphs and can be used to find all such graphs with their combinatoric weights. The techniques used also allow for a systematic investigation into resummations of classes of graphs. Examples are given for resumming one-loop and multi-loop tadpoles, both through all orders of perturbation theory. Since the functional differential equations derived are non-perturbative, they constitute also a convenient starting point for other expansions than those in numbers of loops or powers of coupling constants. We work with general interactions through four powers in the field.Comment: 34 pages; abstract expanded; section IV.E about absorption of tadpoles and one related reference added; eqs. (20) and (23) corrected; further references added; some minor beautifications; to be published by Phys.Rev.

    Next-to-next-to-leading order fits to CCFR'97 xF3xF_3 data and infrared renormalons

    Get PDF
    We briefly summarize the outcomes of our recent improved fits to the experimental data of CCFR collaboration for xF3xF_3 structure function of νN\nu N deep-inelastic scattering at the next-to-next-to-leading order. Special attention is paid to the extraction of αs(MZ)\alpha_s(M_Z) and the parameter of the infrared renormalon model for 1/Q21/Q^2-correction at different orders of perturbation theory. The results can be of interest for planning similar studies using possible future data of Neutrino Factories.Comment: 3 pages, presented at WG3 of 4th NuFact'02 Workshop, London 1-6 July, 200

    Strong Coupling Constant with Flavour Thresholds at Four Loops in the MS-bar Scheme

    Full text link
    We present in analytic form the matching conditions for the strong coupling constant alpha_s^(n_f)(mu) at the flavour thresholds to three loops in the modified minimal-subtraction scheme. Taking into account the recently calculated coefficient beta_3 of the Callan-Symanzik beta function of quantum chromodynamics, we thus derive a four-loop formula for alpha_s^(n_f)(mu) together with appropriate relationships between the asymptotic scale parameters Lambda^(n_f) for different numbers of flavours n_f.Comment: 10 pages (Latex), 3 figures (Postscript

    Three loop MSbar renormalization of QED in the 't~Hooft-Veltman gauge

    Full text link
    Quantum electrodynamics (QED) fixed in the 't~Hooft-Veltman gauge is renormalized to three loops in the MSbar scheme. The beta-functions and anomalous dimensions are computed as functions of the usual QED coupling and the additional coupling, xi, which is introduced as part of the nonlinear gauge fixing condition. Similar to the maximal abelian gauge of quantum chromodynamics, the renormalization of the gauge parameter is singular.Comment: 8 latex page
    corecore