31 research outputs found

    Vanadium Carbide (V4C3) MXene as an Efficient Anode for Li-Ion and Na-Ion Batteries

    Get PDF
    Li-ion batteries (LIBs) and Na-ion batteries (SIBs) are deemed green and efficient electrochemical energy storage and generation devices; meanwhile, acquiring a competent anode remains a serious challenge. Herein, the density-functional theory (DFT) was employed to investigate the performance of V4C3 MXene as an anode for LIBs and SIBs. The results predict the outstanding electrical conductivity when Li/Na is loaded on V4C3. Both Li2xV4C3 and Na2xV4C3 (x = 0.125, 0.5, 1, 1.5, and 2) showed expected low-average open-circuit voltages of 0.38 V and 0.14 V, respectively, along with a good Li/Na storage capacity of (223 mAhg?1) and a good cycling performance. Furthermore, there was a low diffusion barrier of 0.048 eV for Li0.0625V4C3 and 0.023 eV for Na0.0625V4C3, implying the prompt intercalation/extraction of Li/Na. Based on the findings of the current study, V4C3-based materials may be utilized as an anode for Li/Na-ion batteries in future applications. 2022 by the authors.This work was financially funded by the authors express their gratitude for the support of the Researchers Supporting Project Number (RSP-2021/267) King Saud University, Riyadh, Saudi Arabia. This work is also supported by Scientific Research Fund of Hunan Provincial Education Department (No. 21B0637).Scopu

    Bulk and Low Dimension Properties of ZnSe Using spds* Tight-Binding Model

    No full text

    Ab-Initio Investigations of Magnetic Properties and Induced Half-Metallicity in Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75) Alloys

    No full text
    Ab-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized Ga1−xMnxP (x = 0.03, 0.25, 0.5, and 0.75) ternary alloys. In order to perceive viable half-metallic (HM) states and unprecedented diluted magnetic semiconductors (DMSs) such as spintronic materials, the full potential linearized augmented plane wave method is utilized within the generalized gradient approximation (GGA). In order to tackle the correlation effects on 3d states of Mn atoms, we also employ the Hubbard U (GGA + U) technique to compute the magnetic properties of an Mn-doped GaP compound. We discuss the emerged global magnetic moments and the robustness of half-metallicity by varying the Mn composition in the GaP compound. Using GGA + U, the results of the density of states demonstrate that the incorporation of Mn develops a half-metallic state in the GaP compound with an engendered band gap at the Fermi level (EF) in the spin–down state. Accordingly, the half-metallic feature is produced through the hybridization of Mn-d and P-p orbitals. However, the half-metallic character is present at a low x composition with the GGA procedure. The produced magnetic state occurs in these materials, which is a consequence of the exchange interactions between the Mn-element and the host GaP system. For the considered alloys, we estimated the X-ray absorption spectra at the K edge of Mn. A thorough clarification of the pre-edge peaks is provided via the results of the theoretical absorption spectra. It is inferred that the valence state of Mn in Ga1−xMnxP alloys is +3. The predicted theoretical determinations surmise that the Mn-incorporated GaP semiconductor could inevitably be employed in spintronic devices

    Synergy of Small Antiviral Molecules on a Black-Phosphorus Nanocarrier: Machine Learning and Quantum Chemical Simulation Insights

    No full text
    Favipiravir (FP) and Ebselen (EB) belong to a broad range of antiviral drugs that have shown active potential as medications against many viruses. Employing molecular dynamics simulations and machine learning (ML) combined with van der Waals density functional theory, we have uncovered the binding characteristics of these two antiviral drugs on a phosphorene nanocarrier. Herein, by using four different machine learning models (i.e., Bagged Trees, Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Regression Trees (RT)), the Hamiltonian and the interaction energy of antiviral molecules in a phosphorene monolayer are trained in an appropriate way. However, training efficient and accurate models for approximating the density functional theory (DFT) is the final step in using ML to aid in the design of new drugs. To improve the prediction accuracy, the Bayesian optimization approach has been employed to optimize the GPR, SVR, RT, and BT models. Results revealed that the GPR model obtained superior prediction performance with an R2 of 0.9649, indicating that it can explain 96.49% of the data’s variability. Then, by means of DFT calculations, we examine the interaction characteristics and thermodynamic properties in a vacuum and a continuum solvent interface. These results illustrate that the hybrid drug is an enabled, functionalized 2D complex with vigorous thermostability. The change in Gibbs free energy at different surface charges and temperatures implies that the FP and EB molecules are allowed to adsorb from the gas phase onto the 2D monolayer at different pH conditions and high temperatures. The results reveal a valuable antiviral drug therapy loaded by 2D biomaterials that may possibly open a new way of auto-treating different diseases, such as SARS-CoV, in primary terms

    A theoretical analysis of elastic and optical properties of half Heusler MCoSb (M=Ti, Zr and Hf)

    No full text
    Ab initio calculation of the Elastic and Optical properties of cubic half-Heusler compounds MCoSb (M = Ti, Zr and Hf) are reported using the FP-LAPW approach of the Density Functional Theory. Generalized Gradient Approximation was used as the exchange and correlation potential for investigating these properties. It was found that the Bulk modulus decreases with the increase in temperature and increases with the increase in pressure for all of the three Heusler compounds under study. The Debye's temperature along with compressional, Shear and average elastic wave velocities has also been calculated. The elastic results are compared with the available theoretical and experimental works. The optical investigation of the compounds shows high reflectivity at the infrared region of the photon energy. The imaginary part of the dielectric function reveled the optically non-metallic behavior of the MCoSb compounds, with optical band gap being around 1 eV

    Materials and interfaces properties optimization for high-efficient and more stable RbGeI3 perovskite solar cells: optoelectrical modelling

    No full text
    Abstract In this research work, we investigated the effects of a broad set of materials properties and external operating parameters on the opto-electrical output of a hybrid RbGeI3-based perovskite solar cell (PSC) as a means of enhancing its performance. We first performed a judicious numerical modelling of the reference cell with the following structure FTO/TiO2/RbGeI3/Spiro-OMeTAD/Ag, with data retrieved from the experiment. SCAPS program enables to model the device, considering charge carriers transport governing equations. Investigations are directed on addressing the current challenges that include thinner, less environmentally harmful, cost-effectiveness, and more stable solar devices over time. Analysis of the effects of different hole transport material (HTM) on current–voltage (J-V) and external quantum efficiency (QE) characteristics, helps to identify CuI as an ideal HTM. Optimal cell output were achieved by investigating the effects of metal contact work function, defect states, RbGeI3 thickness, light transmission/reflection at the front/back contact, as well as operating temperature. As a result, efficiency increased significantly from 10.11 to 18.10%, and fill factor that represents a stability indicator, increased from 63.68 to 76.95%. Moreover, an optimum open-circuit voltage Voc = 0.70 V and a high short-circuit current density of Jsc = 33.51 mA/cm2 were recorded. An additional study on the capture cross-section of charge carriers ( σn,p{\sigma }_{n,p} σ n , p ) on PV characteristics, enabled to achieve a power conversion efficiency (PCE) of 29.71% and FF of 88% at a value of σn,p{\sigma }_{n,p} σ n , p selected to be 10–22 cm2. This contribution aims at designing and producing thinner, more efficient, more stable and more environmentally clean and economically viable PSCs

    2D Hexagonal SnTe monolayer: a quasi direct band gap semiconductor with strain sensitive electronic and optical properties

    No full text
    The stability and electronic and optical properties of two-dimensional (2D) SnTe monolayer has been systematically studied by using first-principles calculations based on density functional theory. Our computations demonstrate that the predicted 2D SnTe monolayer is a stable quasi-direct semiconductor. Also, analysis of its electronic property shows that the ground state of this monolayer is a quasi-direct semiconductor with a band gap of ~2.00. This band gap can be effectively modulated by external strains. Investigation of optical properties shows that monolayer SnTe exhibits significant absorption and reflectivity in the ultraviolet region of the electromagnetic spectrum
    corecore