699 research outputs found
Carbon and nitrogen abundances of stellar populations in the globular cluster M 2
We present CH and CN index analysis and C and N abundance calculations based
on the low-resolution blue spectra of red giant branch (RGB) stars in the
Galactic globular cluster NGC 7089 (M 2). Our main goal is to investigate the
C-N anticorrelation for this intermediate metallicity cluster. The data were
collected with DOLORES, the multiobject, low-resolution facility at the
Telescopio Nazionale Galileo. Spectroscopic data were coupled with UV
photometry obtained during the spectroscopic run. We found a considerable
star-to-star variation in both A(C) and A(N) at all luminosities for our sample
of 35 targets. These abundances appear to be anticorrelated, with a hint of
bimodality in the C content for stars with luminosities below the RBG bump
(V~15.7), while the range of variations in N abundances is very large and spans
almost ~ 2 dex. We find additional C depletion as the stars evolve off the RGB
bump, in fairly good agreement with theoretical predictions for metal-poor
stars in the course of normal stellar evolution. We isolated two groups with
N-rich and N-poor stars and found that N abundance variations correlate with
the (U-V) color in the DOLORES color-magnitude diagram (CMD). The V, (U-V) CMD
for this cluster shows an additional RGB sequence, located at the red of the
main RGB and amounting to a small fraction of the total giant population. We
identified two CH stars detected in previous studies in our U, V images. These
stars, which are both cluster members, fall on this redder sequence, suggesting
that the anomalous RGB should have a peculiar chemical pattern. Unfortunately,
no additional spectra were obtained for stars in this previously unknown RGB
branch.Comment: 15 pages, 14 figures; accepted for publication in A&
The iron dispersion of the globular cluster M 2, revised
M 2 has been claimed to posses three distinct stellar components that are
enhanced in iron relative to each other. We use equivalent width measurements
from 14 red giant branch stars from which Yong et al. detect a 0.8 dex
wide, trimodal iron distribution to redetermine the metallicity of the cluster.
In contrast to Yong et al., which derive atmospheric parameters following only
the classical spectroscopic approach, we perform the chemical analysis using
three different methods to constrain effective temperatures and surface
gravities. When atmospheric parameters are derived spectroscopically, we
measure a trimodal metallicity distribution, that well resembles that by Yong
et al. We find that the metallicity distribution from Fe II lines strongly
differs from the distribution obtained from Fe I features when photometric
gravities are adopted. The Fe I distribution mimics the metallicity
distribution obtained using spectroscopic parameters, while the Fe II shows the
presence of only two stellar groups with metallicity [Fe/H]-1.5 and
-1.1 dex, which are internally homogeneous in iron. This finding, when coupled
with the high-resolution photometric evidence, demonstrates that M 2 is
composed by a dominant population (99%) homogeneous in iron and a
minority component (1%) enriched in iron with respect to the main cluster
population.Comment: 14 pages, 6 figures, 3 tables. Accepted for publication by MNRA
Globular Cluster Mass Loss in the Context of Multiple Populations
Many scenarios for the origin of the chemical anomalies observed in globular clusters (GCs; i.e., multiple populations) require that GCs were much more massive at birth, up to , than they are presently. This is invoked in order to have enough material processed through first generation stars in order to form the observed numbers of enriched stars (inferred to be second generation stars in these models). If such mass loss was due to tidal stripping, gas expulsion, or tidal interaction with the birth environment, there should be clear correlations between the fraction of enriched stars and other cluster properties, whereas the observations show a remarkably uniform enriched fraction of (from 33 observed GCs). If interpreted in the heavy mass loss paradigm, this means that all GCs lost the same fraction of their initial mass (between \%), regardless of their mass, metallicity, location at birth or subsequent migration, or epoch of formation. This is incompatible with predictions, hence we suggest that GCs were not significantly more massive at birth, and that the fraction of enriched to primordial stars observed in clusters today likely reflects their initial value. If true, this would rule out self-enrichment through nucleosynthesis as a viable solution to the multiple population phenomenon
Mining SDSS in search of Multiple Populations in Globular Clusters
Several recent studies have reported the detection of an anomalous color
spread along the red giant branch (RGB) of some globular clusters (GC) that
appears only when color indices including a near ultraviolet band (such as
Johnson U or Stromgren u) are considered. This anomalous spread in color
indexes such as U-B or c_{y} has been shown to correlate with variations in the
abundances of light elements such as C, N, O, Na, etc., which, in turn, are
generally believed to be associated with subsequent star formation episodes
that occurred in the earliest few 10^{8} yr of the cluster's life. Here we use
publicly available u, g, r Sloan Digital Sky Survey photometry to search for
anomalous u-g spreads in the RGBs of nine Galactic GCs. In seven of them (M 2,
M 3, M 5, M 13, M 15, M 92 and M 53), we find evidence of a statistically
significant spread in the u-g color, not seen in g-r and not accounted for by
observational effects. In the case of M 5, we demonstrate that the observed u-g
color spread correlates with the observed abundances of Na, the redder stars
being richer in Na than the bluer ones. In all the seven clusters displaying a
significant u-g color spread, we find that the stars on the red and blue sides
of the RGB, in (g, u-g) color magnitude diagrams, have significantly different
radial distributions. In particular, the red stars (generally identified with
the second generation of cluster stars, in the current scenario) are always
more centrally concentrated than blue stars (generally identified with the
first generation) over the range sampled by the data (0.5r_{h} < r < 5r_{h}),
in qualitative agreement with the predictions of some recent models of the
formation and chemical evolution of GCs. Our results suggest that the
difference in the radial distribution between first and second generation stars
may be a general characteristic of GCs.Comment: 11 pages, 5 figures, typos adde
Searching for GC-like abundance patterns in young massive clusters II. - Results from the Antennae galaxies
The presence of multiple populations (MPs) with distinctive light element abundances is a widespread phenomenon in clusters older than 6 Gyr. Clusters with masses, luminosities, and sizes comparable to those of ancient globulars are still forming today. Nonetheless, the presence of light element variations has been poorly investigated in such young systems, even if the knowledge of the age at which this phenomenon develops is crucial for theoretical models on MPs. We use J-band integrated spectra of three young (7-40 Myr) clusters in NGC 4038 to look for Al variations indicative of MPs. Assuming that the large majority (>70%) of stars are characterised by high Al content - as observed in Galactic clusters with comparable mass; we find that none of the studied clusters show significant Al variations. Small Al spreads have been measured in all the six young clusters observed in the near-infrared. While it is unlikely that young clusters only show low Al whereas old ones display different levels of Al variations; this suggests the possibility that MPs are not present at such young ages at least among the high-mass stellar component. Alternatively, the fraction of stars with field-like chemistry could be extremely large, mimicking low Al abundances in the integrated spectrum. Finally, since the near-infrared stellar continuum of young clusters is almost entirely due to luminous red supergiants, we can also speculate that MPs only manifest themselves in low mass stars due to some evolutionary mechanism
The iron dispersion of the globular cluster M 2, revised
M 2 has been claimed to posses three distinct stellar components that are enhanced in iron relative to each other. We use equivalent width measurements from 14 red giant branch stars from which Yong et al. detect a 0.8 dex wide, trimodal iron distribution to redetermine the metallicity of the cluster. In contrast to Yong et al., which derive atmospheric parameters following only the classical spectroscopic approach, we perform the chemical analysis using three different methods to constrain effective temperatures and surface gravities. When atmospheric parameters are derived spectroscopically, we measure a trimodal metallicity distribution, that well resembles that by Yong et al. We find that the metallicity distribution from Fe II lines strongly differs from the distribution obtained from Fe I features when photometric gravities are adopted. The Fe I distribution mimics the metallicity distribution obtained using spectroscopic parameters, while the Fe II shows the presence of only two stellar groups with metallicity [Fe/H]-1.5 and -1.1 dex, which are internally homogeneous in iron. This finding, when coupled with the high-resolution photometric evidence, demonstrates that M 2 is composed by a dominant population (99%) homogeneous in iron and a minority component (1%) enriched in iron with respect to the main cluster population
Carbon and nitrogen abundances of individual stars in the Sculptor dwarf spheroidal galaxy
We present [C/Fe] and [N/Fe] abundance ratios and CH({\lambda}4300) and
S({\lambda}3883) index measurements for 94 red giant branch (RGB) stars in the
Sculptor dwarf spheroidal galaxy from VLT/VIMOS MOS observations at a resolving
power R= 1150 at 4020 {\AA}. This is the first time that [N/Fe] abundances are
derived for a large number of stars in a dwarf spheroidal. We found a trend for
the [C/Fe] abundance to decrease with increasing luminosity on the RGB across
the whole metallicity range, a phenomenon observed in both field and globular
cluster giants, which can be interpreted in the framework of evolutionary
mixing of partially processed CNO material. Both our measurements of [C/Fe] and
[N/Fe] are in good agreement with the theoretical predictions for stars at
similar luminosity and metallicity. We detected a dispersion in the carbon
abundance at a given [Fe/H], which cannot be ascribed to measurement
uncertainties alone. We interpret this observational evidence as the result of
the contribution of different nucleosynthesis sources over time to a not
well-mixed interstellar medium. We report the discovery of two new
carbon-enhanced, metal-poor stars. These are likely the result of pollution
from material enriched by asymptotic giant branch stars, as indicated by our
estimates of [Ba/Fe]> +1. We also attempted a search for dissolved globular
clusters in the field of the galaxy by looking for the distinctive C-N pattern
of second population globular clusters stars in a previously detected, very
metal-poor, chemodynamical substructure. We do not detect chemical anomalies
among this group of stars. However, small number statistics and limited spatial
coverage do not allow us to exclude the hypotheses that this substructure forms
part of a tidally shredded globular cluster.Comment: 18 pages, 14 figures, 3 tables. Accepted to A&
The double RGB in M 2: C, N, Sr and Ba abundances
The globular cluster M 2 has a photometrically detected double red giant
branch (RGB) sequence. We investigate here the chemical differences between the
two RGBs in order to gain insight in the star formation history of this
cluster. The low-resolution spectra, covering the blue spectral range, were
collected with the MODS spectrograph on the LBT, and analyzed via spectrum
synthesis technique. The high quality of the spectra allows us to measure C, N,
Ba, and Sr abundances relative to iron for 15 RGB stars distributed along the
two sequences. We add to the MODS sample C and N measurements for 35 additional
stars belonging to the blue RGB sequence, presented in Lardo et al. (2012). We
find a clear separation between the two groups of stars in s-process elements
as well as C and N content. Both groups display a C-N anti-correlation and the
red RGB stars are on average richer in C and N with respect to the blue RGB.
Our results reinforce the suggestion that M2 belongs to the family of globular
clusters with complex star formation history, together with Omega Cen, NGC
1851, and M 22.Comment: 11 pages, 8 figures. Accepted for publication in MNRA
- …
