517 research outputs found

    Carbon and nitrogen abundances of stellar populations in the globular cluster M 2

    Full text link
    We present CH and CN index analysis and C and N abundance calculations based on the low-resolution blue spectra of red giant branch (RGB) stars in the Galactic globular cluster NGC 7089 (M 2). Our main goal is to investigate the C-N anticorrelation for this intermediate metallicity cluster. The data were collected with DOLORES, the multiobject, low-resolution facility at the Telescopio Nazionale Galileo. Spectroscopic data were coupled with UV photometry obtained during the spectroscopic run. We found a considerable star-to-star variation in both A(C) and A(N) at all luminosities for our sample of 35 targets. These abundances appear to be anticorrelated, with a hint of bimodality in the C content for stars with luminosities below the RBG bump (V~15.7), while the range of variations in N abundances is very large and spans almost ~ 2 dex. We find additional C depletion as the stars evolve off the RGB bump, in fairly good agreement with theoretical predictions for metal-poor stars in the course of normal stellar evolution. We isolated two groups with N-rich and N-poor stars and found that N abundance variations correlate with the (U-V) color in the DOLORES color-magnitude diagram (CMD). The V, (U-V) CMD for this cluster shows an additional RGB sequence, located at the red of the main RGB and amounting to a small fraction of the total giant population. We identified two CH stars detected in previous studies in our U, V images. These stars, which are both cluster members, fall on this redder sequence, suggesting that the anomalous RGB should have a peculiar chemical pattern. Unfortunately, no additional spectra were obtained for stars in this previously unknown RGB branch.Comment: 15 pages, 14 figures; accepted for publication in A&

    Globular Cluster Mass Loss in the Context of Multiple Populations

    Get PDF
    Many scenarios for the origin of the chemical anomalies observed in globular clusters (GCs; i.e., multiple populations) require that GCs were much more massive at birth, up to 10−100×10-100\times, than they are presently. This is invoked in order to have enough material processed through first generation stars in order to form the observed numbers of enriched stars (inferred to be second generation stars in these models). If such mass loss was due to tidal stripping, gas expulsion, or tidal interaction with the birth environment, there should be clear correlations between the fraction of enriched stars and other cluster properties, whereas the observations show a remarkably uniform enriched fraction of 0.68±0.070.68\pm0.07 (from 33 observed GCs). If interpreted in the heavy mass loss paradigm, this means that all GCs lost the same fraction of their initial mass (between 95−9895-98\%), regardless of their mass, metallicity, location at birth or subsequent migration, or epoch of formation. This is incompatible with predictions, hence we suggest that GCs were not significantly more massive at birth, and that the fraction of enriched to primordial stars observed in clusters today likely reflects their initial value. If true, this would rule out self-enrichment through nucleosynthesis as a viable solution to the multiple population phenomenon

    Mining SDSS in search of Multiple Populations in Globular Clusters

    Full text link
    Several recent studies have reported the detection of an anomalous color spread along the red giant branch (RGB) of some globular clusters (GC) that appears only when color indices including a near ultraviolet band (such as Johnson U or Stromgren u) are considered. This anomalous spread in color indexes such as U-B or c_{y} has been shown to correlate with variations in the abundances of light elements such as C, N, O, Na, etc., which, in turn, are generally believed to be associated with subsequent star formation episodes that occurred in the earliest few 10^{8} yr of the cluster's life. Here we use publicly available u, g, r Sloan Digital Sky Survey photometry to search for anomalous u-g spreads in the RGBs of nine Galactic GCs. In seven of them (M 2, M 3, M 5, M 13, M 15, M 92 and M 53), we find evidence of a statistically significant spread in the u-g color, not seen in g-r and not accounted for by observational effects. In the case of M 5, we demonstrate that the observed u-g color spread correlates with the observed abundances of Na, the redder stars being richer in Na than the bluer ones. In all the seven clusters displaying a significant u-g color spread, we find that the stars on the red and blue sides of the RGB, in (g, u-g) color magnitude diagrams, have significantly different radial distributions. In particular, the red stars (generally identified with the second generation of cluster stars, in the current scenario) are always more centrally concentrated than blue stars (generally identified with the first generation) over the range sampled by the data (0.5r_{h} < r < 5r_{h}), in qualitative agreement with the predictions of some recent models of the formation and chemical evolution of GCs. Our results suggest that the difference in the radial distribution between first and second generation stars may be a general characteristic of GCs.Comment: 11 pages, 5 figures, typos adde

    The iron dispersion of the globular cluster M 2, revised

    Get PDF
    M 2 has been claimed to posses three distinct stellar components that are enhanced in iron relative to each other. We use equivalent width measurements from 14 red giant branch stars from which Yong et al. detect a ∼\sim0.8 dex wide, trimodal iron distribution to redetermine the metallicity of the cluster. In contrast to Yong et al., which derive atmospheric parameters following only the classical spectroscopic approach, we perform the chemical analysis using three different methods to constrain effective temperatures and surface gravities. When atmospheric parameters are derived spectroscopically, we measure a trimodal metallicity distribution, that well resembles that by Yong et al. We find that the metallicity distribution from Fe II lines strongly differs from the distribution obtained from Fe I features when photometric gravities are adopted. The Fe I distribution mimics the metallicity distribution obtained using spectroscopic parameters, while the Fe II shows the presence of only two stellar groups with metallicity [Fe/H]≃\simeq-1.5 and -1.1 dex, which are internally homogeneous in iron. This finding, when coupled with the high-resolution photometric evidence, demonstrates that M 2 is composed by a dominant population (∼\sim99%) homogeneous in iron and a minority component (∼\sim1%) enriched in iron with respect to the main cluster population

    Evidence for C and Mg variations in the GD-1 stellar stream

    Get PDF
    Dynamically cold stellar streams are the relics left over from globular cluster dissolution. These relics offer a unique insight into a now fully disrupted population of ancient clusters in our Galaxy. Using a combination of Gaia eDR3 proper motions, optical and near-UV colours, we select a sample of likely Red Giant Branch stars from the GD-1 stream for medium-low resolution spectroscopic follow-up. Based on radial velocity and metallicity, we are able to find 14 new members of GD-1, 5 of which are associated with the spur and blob/cocoon off-stream features. We measured C-abundances to probe for abundance variations known to exist in globular clusters. These variations are expected to manifest in a subtle way in globular clusters with such low masses (similar to 10(4) M-circle dot) and metallicities ([Fe/H] similar to -2.1 dex). We find that the C-abundances of the stars in our sample display a small but significant (3 sigma level) spread. Furthermore, we find similar to 3 sigma variation in Mg-abundances among the stars in our sample that have been observed by APOGEE. These abundance patterns match the ones found in Galactic globular clusters of similar metallicity. Our results suggest that GD-1 represents another fully disrupted low-mass globular cluster where light-element abundance spreads have been found

    Confirmation of a metallicity spread amongst first population stars in globular clusters

    Get PDF
    Stars in massive star clusters exhibit intrinsic variations in some light elements (the multiple populations phenomenon) that are difficult to explain in a fully coherent formation scenario. In recent years, high quality Hubble Space Telescope (HST) photometry has led to the characterisation of the global properties of these multiple populations in an unparalleled level of detail. In particular, the colour-(pseudo)colour diagrams known as ‘chromosome maps’ have been proven to be very efficient at separating cluster stars with a field-like metal abundance distribution (first population) from an object with distinctive light-element abundance anti-correlations (second population). The unexpected wide colour ranges covered by the first population group – traditionally considered to have a uniform chemical composition – in the chromosome maps of the majority of the investigated Galactic globular clusters have recently been attributed to intrinsic metallicity variations up to ∼0.30 dex from the study of subgiant branch stars in two metal-rich Galactic globular clusters by employing appropriate HST filter combinations. On the other hand, high-resolution spectroscopy of small samples of first populations stars in the globular clusters NGC 3201 and NGC 2808 – both displaying extended sequences of first population stars in their chromosome maps – have provided conflicting results thus far, with a spread of metal abundance detected in NGC 3201 but not in NGC 2808. We present here a new method that employs HST near-UV and optical photometry of red giant branch stars to confirm these recent results independently. Our approach was firstly validated using observational data for M 2, a globular cluster hosting a small group of first population stars with an enhanced (by ≃0.5 dex) metallicity with respect to the main component. We then applied our method to three clusters that cover a much larger metallicity range and that have well populated, extended first population sequences in their chromosome maps, namely M 92, NGC 2808, and NGC 6362. We confirm that metallicity spreads are present among first population stars in these clusters, thus solidifying the case for the existence of unexpected variations up to a factor of two of metal abundances in most globular clusters. We also confirm the complex behaviour of the mean metallicity (and metallicity range) differences between first and second population stars

    A chemical trompe-l'\oe{}il: no iron spread in the globular cluster M22

    Get PDF
    We present the analysis of high-resolution spectra obtained with UVES and UVES-FLAMES at the Very Large Telescope of 17 giants in the globular cluster M22, a stellar system suspected to have an intrinsic spread in the iron abundance. We find that when surface gravities are derived spectroscopically (by imposing to obtain the same iron abundance from FeI and FeII lines) the [Fe/H] distribution spans ~0.5 dex, according to previous analyses. However, the gravities obtained in this way correspond to unrealistic low stellar masses (0.1-0.5 Msun) for most of the surveyed giants. Instead, when photometric gravities are adopted, the [FeII/H] distribution shows no evidence of spread at variance with the [FeI/H] distribution. This difference has been recently observed in other clusters and could be due to non-local thermodynamical equilibrium effects driven by over-ionization mechanisms, that mainly affect the neutral species (thus providing lower [FeI/H]) but leave [FeII/H] unaltered. We confirm that the s-process elements show significant star-to-star variations and their abundances appear to be correlated with the difference between [FeI/H] and [FeII/H]. This puzzling finding suggests that the peculiar chemical composition of some cluster stars may be related to effects able to spuriously decrease [FeI/H]. We conclude that M22 is a globular cluster with no evidence of intrinsic iron spread, ruling out that it has retained the supernovae ejecta in its gravitational potential well.Comment: Accepted for publication to ApJ; 33 pages, 10 figures, 6 table

    Impact of a companion and of chromospheric emission on the shape of chromosome maps for globular clusters

    Get PDF
    We investigate the role of binaries and chromospheric emission on HST photometry of globular clusters' stars. We quantify their respective effects on the position of stars in the chromosome map, especially among the first population. We computed atmosphere models and synthetic spectra for stars of different chemical compositions, based on isochrones produced by stellar evolution calculations with abundance variations representative of first and second populations in GCs. From this we built synthetic chromosome maps for a mixture of stars of different chemical compositions. We subsequently replaced a fraction of stars with binaries, or stars with chromospheric emission, using synthetic spectroscopy. We studied how the position of stars is affected in the chromosome map. Binaries can, in principle, explain the extension of the first population in the chromosome map. However, we find that given the binary fraction reported for GCs, the density of stars in the extended part is too small. Another difficulty of the binary explanation is that the shape of the distribution of the first population in the chromosome map is different in clusters with similar binary fractions. Additionally, we find that the contribution of chromospheric emission lines to the HST photometry is too small to have an observable impact on the shape of the chromosome map. Continuum chromospheric emission has an effect qualitatively similar to binaries. We conclude that binaries do have an impact on the morphology of the chromosome map of GCs, but they are unlikely to explain entirely the shape of the extended distribution of the first population stars. Uncertainties in the properties of continuum chromospheric emission of stars in GCs prevent any quantitative conclusion. Therefore, the origin of the extended first population remains unexplained
    • …
    corecore