8 research outputs found

    Segmentation and quantification of venous structures and perivascular spaces in the thalamus in epilepsy using 7 Tesla MRI

    No full text
    Background and purpose: Epilepsy is a complex neurological disorder affecting 50 million people worldwide. Persistent seizures may correlate with neural network, microstructural, and vascular changes within the thalamus. These thalamic changes may result from seizure activity or broader alterations involving neuronal vasculature and neuroinflammatory processes linked to glymphatic drainage. Improved resolution with Ultra-high field (UHF) magnetic resonance imaging (MRI) may be useful in identifying possible thalamic vascular abnormalities not otherwise detectable at lower field strengths. Materials and methods: We outline a novel method which leverages UHF neuroimaging for detection and quantification of vessels and perivascular spaces (PVS) within the thalamus in 25 epilepsy patients and 16 controls, to uncover possible underlying imaging biomarkers of epilepsy. In our analysis, we optimize a MATLAB-based Frangi-based detection tool called Perivascular Space Semi-Automated Segmentation (PVSSAS) to detect thalamic PVSs, and additionally use a second Frangi-based segmentation tool method to automate detection of vascular structures in the thalamus. The resulting PVS and vessel masks were used to quantify differences in the number of vessels, PVS, overlaps, and number of PVS overlaps per vessel detected between groups, using a Hessian detection filter linked on an 18-connected network. Results: We found significantly more thalamic PVS (p = 0.0307) and a significant increase in the number of thalamic vessels (p = 0.038) in patients compared to controls. Conclusion: Here we have developed a novel process which leverages UHF MRI to quantify and detect thalamic vessels and PVS that may provide a potential neuroimaging biomarker of epilepsy. Statement of Significance: We use 7T, ultra-high field MRI and employed an innovative combination of semi-automated perivascular space segmentation and automated vessel segmentation to visualize and quantify vessels and perivascular spaces (PVS) within the thalamus, a highly cited region of interest in epilepsy. To our knowledge, this is the first study to semi-automatically visualize and segment PVS in the thalamus and automatically detect thalamic vessels. We uncovered detectable differences in thalamic vasculature and PVS. These findings suggests that increases in the number of thalamic PVS and vessels may be a potential neuroimaging biomarker in epilepsy. This tool may be useful in the detection of subtle vascular changes in other regions of the brain related to epilepsy or can be employed in other neurological conditions

    Intracarotid amobarbital disrupts synchronous and nested oscillatory activity ipsilateral to injection

    Get PDF
    The mechanism of amobarbital action during the intracarotid amobarbital procedure is poorly understood. We report a patient case who underwent IAP while implanted with bilateral stereo-EEG. We analyzed the spectral power, phase amplitude coupling, and cluster-phase group synchrony during the procedure. Delta and gamma power increased bilaterally. By contrast, phase amplitude coupling increased only ipsilateral to the injection. Similarly, 4–30 Hz cluster-phase group synchrony declines and gamma cluster-phase group synchrony increases only ipsilateral to the injection. These results suggest that a possible additional mechanism for amobarbital action in the IAP is by altering the precise timing of oscillatory activity. Keywords: Intracarotid amobarbital procedure, Wada, Stereo-EEG, Synchrony, Phase amplitude coupling, Epilepsy surger

    A multicenter retrospective study of patients treated in the thalamus with responsive neurostimulation

    Get PDF
    IntroductionFor drug resistant epilepsy patients who are either not candidates for resective surgery or have already failed resective surgery, neuromodulation is a promising option. Neuromodulatory approaches include responsive neurostimulation (RNS), deep brain stimulation (DBS), and vagal nerve stimulation (VNS). Thalamocortical circuits are involved in both generalized and focal onset seizures. This paper explores the use of RNS in the centromedian nucleus of the thalamus (CMN) and in the anterior thalamic nucleus (ANT) of patients with drug resistant epilepsy.MethodsThis is a retrospective multicenter study from seven different epilepsy centers in the United States. Patients that had unilateral or bilateral thalamic RNS leads implanted in the CMN or ANT for at least 6 months were included. Primary objectives were to describe the implant location and determine changes in the frequency of disabling seizures at 6 months, 1 year, 2 years, and > 2 years. Secondary objectives included documenting seizure free periods, anti-seizure medication regimen changes, stimulation side effects, and serious adverse events. In addition, the global clinical impression scale was completed.ResultsTwelve patients had at least one lead placed in the CMN, and 13 had at least one lead placed in the ANT. The median baseline seizure frequency was 15 per month. Overall, the median seizure reduction was 33% at 6 months, 55% at 1 year, 65% at 2 years, and 74% at >2 years. Seizure free intervals of at least 3 months occurred in nine patients. Most patients (60%, 15/25) did not have a change in anti-seizure medications post RNS placement. Two serious adverse events were recorded, one related to RNS implantation. Lastly, overall functioning seemed to improve with 88% showing improvement on the global clinical impression scale.DiscussionMeaningful seizure reduction was observed in patients who suffer from drug resistant epilepsy with unilateral or bilateral RNS in either the ANT or CMN of the thalamus. Most patients remained on their pre-operative anti-seizure medication regimen. The device was well tolerated with few side effects. There were rare serious adverse events. Most patients showed an improvement in global clinical impression scores
    corecore