5 research outputs found

    Proteomic Discovery and Development of a Multiplexed Targeted MRM-LC-MS/MS Assay for Urine Biomarkers of Extracellular Matrix Disruption in Mucopolysaccharidoses I, II, and VI

    Get PDF
    The mucopolysaccharidoses (MPS) are lysosomal storage disorders that result from defects in the catabolism of glycosaminoglycans. Impaired muscle, bone, and connective tissue are typical clinical features of MPS due to disruption of the extracellular matrix Markers of MPS disease pathology are needed to determine disease severity and monitor effects of existing and emerging new treatments on disease mechanisms. Urine samples from a small cohort of MPS-I, -II, and -VI patients (n = 12) were analyzed using label-free quantative proteomics. Fifty-three proteins including many associated with extracellular matrix organization were differently expressed. A targeted multiplexed peptide MRM LC-MS/MS assay was used on a larger validation cohort of patient samples (MPS-I n = 18, MPS-II n = 12, MPS-VI n = 6, control n = 20). MPS-I and -II groups were further subdivided according to disease severity. None of the markers assessed were altered significantly in the mild disease groups compared to controls. beta-galactosidase, a lysosomal protein, was elevated 3.6-5.7-fold significantly (p <0.05) in all disease groups apart from mild MPS-I and -II. Collagen type I alpha, fatty-acid-binding-protein 5, nidogen-1, cartilage oligomeric matrix protein, and insulin-like growth factor binding protein 7 concentrations were elevated in severe MPS I and II groups. Cartilage oligomeric matrix protein, insulin-like growth factor binding protein 7, and beta-galactosidase were able to distinguish the severe neurological form of MPS-II from the milder non-neurological form. Protein Heg1 was significantly raised only in MPS-VI. This work describes the discovery of new biomarkers of MPS that represent disease pathology and allows the stratification of MPS-II patients according to disease severity

    100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report.

    No full text
    BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.)

    Whole-genome sequencing of patients with rare diseases in a national health system

    No full text
    Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare
    corecore