1,273 research outputs found

    Self-consistent 2D models of fast rotating early-type star

    Full text link
    This work aims at presenting the first two-dimensional models of an isolated rapidly rotating star that include the derivation of the differential rotation and meridional circulation in a self-consistent way.We use spectral methods in multidomains, together with a Newton algorithm to determine the steady state solutions including differential rotation and meridional circulation for an isolated non-magnetic, rapidly rotating early-type star. In particular we devise an asymptotic method for small Ekman numbers (small viscosities) that removes the Ekman boundary layer and lifts the degeneracy of the inviscid baroclinic solutions.For the first time, realistic two-dimensional models of fast-rotating stars are computed with the actual baroclinic flows that predict the differential rotation and the meridional circulation for intermediate-mass and massive stars. These models nicely compare with available data of some nearby fast-rotating early-type stars like Ras Alhague (α\alpha Oph), Regulus (α\alpha Leo), and Vega (α\alpha Lyr). It is shown that baroclinicity drives a differential rotation with a slow pole, a fast equator, a fast core, and a slow envelope. The differential rotation is found to increase with mass, with evolution (here measured by the hydrogen mass fraction in the core), and with metallicity. The core-envelope interface is found to be a place of strong shear where mixing will be efficient.Two-dimensional models offer a new view of fast-rotating stars, especially of their differential rotation, which turns out to be strong at the core-envelope interface. They also offer more accurate models for interpreting the interferometric and spectroscopic data of early-type stars.Comment: 16 pages, 17 figures, to appear in Astronomy and Astrophysic

    Physical processes leading to surface inhomogeneities: the case of rotation

    Full text link
    In this lecture I discuss the bulk surface heterogeneity of rotating stars, namely gravity darkening. I especially detail the derivation of the omega-model of Espinosa Lara & Rieutord (2011), which gives the gravity darkening in early-type stars. I also discuss the problem of deriving gravity darkening in stars owning a convective envelope and in those that are members of a binary system.Comment: 23 pages, 11 figure, Lecture given to the school on the cartography of the Sun and the stars (May 2014 in Besan\c{c}on), to appear in LNP, Neiner and Rozelot edts V2: typos correcte

    An algorithm for computing the 2D structure of fast rotating stars

    Full text link
    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditionner of the Jacobian matrix.Comment: 40 pages, 12 figures, accepted in J. Comput. Physic

    Solar energetic electron events measured by MESSENGER and Solar Orbiter. Peak intensity and energy spectrum radial dependences: statistical analysis

    Get PDF
    Context/Aims: We present a list of 61 solar energetic electron (SEE) events measured by the MESSENGER mission and the radial dependences of the electron peak intensity and the peak-intensity energy spectrum. The analysis comprises the period from 2010 to 2015, when MESSENGER heliocentric distance varied between 0.31 and 0.47 au. We also show the radial dependencies for a shorter list of 12 SEE events measured in February and March 2022 by spacecraft near 1 au and by Solar Orbiter around its first close perihelion at 0.32 au. Results: Due to the elevated background intensity level of the particle instrument on board MESSENGER, the SEE events measured by this mission are necessarily large and intense; most of them accompanied by a CME-driven shock, being widespread in heliolongitude, and displaying relativistic (\sim1 MeV) electron intensity enhancements. The two main conclusions derived from the analysis of the large SEE events measured by MESSENGER, which are generally supported by Solar Orbiter's data results, are: (1) There is a wide variability in the radial dependence of the electron peak intensity between \sim0.3 au and \sim1 au, but the peak intensities of the energetic electrons decrease with radial distance from the Sun in 27 out of 28 events. On average and within the uncertainties, we find a radial dependence consistent with R3R^{-3}. (2) The electron spectral index found in the energy range around 200 keV (δ\delta200) of the backward-scattered population near 0.3 au measured by MESSENGER is harder in 19 out of 20 (15 out of 18) events by a median factor of \sim20% (\sim10%) when comparing to the anti-sunward propagating beam (backward-scattered population) near 1 au.Comment: 20 pages, 13 figure

    Asymptotic analysis of high-frequency acoustic modes in rapidly rotating stars

    Full text link
    The asteroseismology of rapidly rotating pulsating stars is hindered by our poor knowledge of the effect of the rotation on the oscillation properties. Here we present an asymptotic analysis of high-frequency acoustic modes in rapidly rotating stars. We study the Hamiltonian dynamics of acoustic rays in uniformly rotating polytropic stars and show that the phase space structure has a mixed character, regions of chaotic trajectories coexisting with stable structures like island chains or invariant tori. In order to interpret the ray dynamics in terms of acoustic mode properties, we then use tools and concepts developed in the context of quantum physics. Accordingly, the high-frequency acoustic spectrum is a superposition of frequency subsets associated with dynamically independent phase space regions. The sub-spectra associated with stable structures are regular and can be modelled through EBK quantization methods while those associated with chaotic regions are irregular but with generic statistical properties. The results of this asymptotic analysis are successfully confronted with the properties of numerically computed high-frequency acoustic modes. The implications for the asteroseismology of rapidly rotating stars are discussed.Comment: 21 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Unusually long path length for a nearly scatter-free solar particle event observed by Solar Orbiter at 0.43 au

    Get PDF
    Context: After their acceleration and release at the Sun, solar energetic particles (SEPs) are injected into the interplanetary medium and are bound to the interplanetary magnetic field (IMF) by the Lorentz force. The expansion of the IMF close to the Sun focuses the particle pitch-angle distribution, and scattering counteracts this focusing. Solar Orbiter observed an unusual solar particle event on 9 April 2022 when it was at 0.43 astronomical units (au) from the Sun. // Aims: We show that the inferred IMF along which the SEPs traveled was about three times longer than the nominal length of the Parker spiral and provide an explanation for this apparently long path. // Methods: We used velocity dispersion analysis (VDA) information to infer the spiral length along which the electrons and ions traveled and infer their solar release times and arrival direction. // Results: The path length inferred from VDA is approximately three times longer than the nominal Parker spiral. Nevertheless, the pitch-angle distribution of the particles of this event is highly anisotropic, and the electrons and ions appear to be streaming along the same IMF structures. The angular width of the streaming population is estimated to be approximately 30 degrees. The highly anisotropic ion beam was observed for more than 12 h. This may be due to the low level of fluctuations in the IMF, which in turn is very probably due to this event being inside an interplanetary coronal mass ejection The slow and small rotation in the IMF suggests a flux-rope structure. Small flux dropouts are associated with very small changes in pitch angle, which may be explained by different flux tubes connecting to different locations in the flare region. // Conclusions: The unusually long path length along which the electrons and ions have propagated virtually scatter-free together with the short-term flux dropouts offer excellent opportunities to study the transport of SEPs within interplanetary structures. The 9 April 2022 solar particle event offers an especially rich number of unique observations that can be used to limit SEP transport models
    corecore