5 research outputs found

    Vibrational spectroscopy and DFT calculations of 1,​3-​dibromo-​2,​4,​6-​trimethylbenzene: Anharmonicity, coupling and methyl group tunneling

    No full text
    International audienceThe Raman, IR and INS spectra of 1,3-dibromo-2,4,6-trimethylbenzene (DBMH) were recorded in the 80-3200 cm-1 range. The molecular conformation and vibrational spectra of DBMH were computed at the MPW1PW91/LANL2DZ level. Except for the methyl 2 environment, the agreement between the DFT calculations and the neutron diffraction structure is almost perfect (deviations < 0.01 Å for bond lengths, < 0.2° for angles). The frequencies of the internal modes of vibration were calculated with the harmonic and anharmonic approximations; the later method yields results that are in remarkable agreement with the spectroscopic data, resulting in a confident assignment of the vibrational bands. Thus, no scaling is necessary. The coupling, in phase or anti-phase, of the motions of symmetrical C-Br and C-Me bonds is highlighted. Our DFT calculations suggest that the torsion of methyl groups 4 and 6 is hindered in deep wells, whereas methyl group 2 is a quasi-free rotor. The failure of the calculations to determine the frequencies of the methyl torsional modes is explained as follows: DFT does not consider the methyl spins and assumes localization of the protons, whereas the methyl groups must be treated as quantum rotors

    Upconversion fluorescence imaging of HeLa cells using ROS generating SiO2-coated lanthanide-doped NaYF4 nanoconstructs

    No full text
    Inorganic nanomaterials able to generate reactive oxygen species (ROS) are promising components for modern medical applications. Activated by near-infrared light, up-converting beta-NaYF4 doped with Er3+ - Yb3+ and Tm3+- Yb3+ pair ions nanoparticles (UCNPs), have a wide range of applications in biological imaging as compared to traditional reagents excited by ultra-violet or visible light. We analysed the green-red and the blue-red luminescence to explain the mechanism of the upconversion depended on the surface condition. The influence of SiO2 coating on the cytotoxicity of the as-produced UCNPs towards HeLa cancer cells was reported. We demonstrated a possibility of a direct UCNPs application to photodynamic therapy, without need to attach additional molecules to their surface. The presence of Tm3+ - Yb3+ pair ions, thus ROS generation capability, renders the SiO2 shell coated nanoparticles to become potentially useful theranostic agent
    corecore