3 research outputs found

    Reaction-diffusion with stochastic decay rates

    Full text link
    Understanding anomalous transport and reaction kinetics due to microscopic physical and chemical disorder is a long-standing goal in many fields including geophysics, biology, and engineering. We consider reaction-diffusion characterized by fluctuations in both transitions times and decay rates. We introduce and analyze a model framework that explicitly connects microscopic fluctuations with the mescoscopic description. For broad distributions of transport and reaction time scales we compute the particle density and derive the equations governing its evolution, finding power-law decay of the survival probability, and spatially heterogeneous decay that leads to subdiffusion and an asymptotically stationary surviving-particle density. These anomalies are clearly attributable to non-Markovian effects that couple transport and chemical properties in both reaction and diffusion terms.Comment: Explain model and applications in more detail. 19 pages, 6 figure

    Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity

    Get PDF
    Molecular transport in living systems regulates numerous processes underlying biological function. Although many cellular components exhibit anomalous diffusion, only recently has the subdiffusive motion been associated with nonergodic behavior. These findings have stimulated new questions for their implications in statistical mechanics and cell biology. Is nonergodicity a common strategy shared by living systems? Which physical mechanisms generate it? What are its implications for biological function? Here, we use single particle tracking to demonstrate that the motion of DC-SIGN, a receptor with unique pathogen recognition capabilities, reveals nonergodic subdiffusion on living cell membranes. In contrast to previous studies, this behavior is incompatible with transient immobilization and therefore it can not be interpreted according to continuous time random walk theory. We show that the receptor undergoes changes of diffusivity, consistent with the current view of the cell membrane as a highly dynamic and diverse environment. Simulations based on a model of ordinary random walk in complex media quantitatively reproduce all our observations, pointing toward diffusion heterogeneity as the cause of DC-SIGN behavior. By studying different receptor mutants, we further correlate receptor motion to its molecular structure, thus establishing a strong link between nonergodicity and biological function. These results underscore the role of disorder in cell membranes and its connection with function regulation. Due to its generality, our approach offers a framework to interpret anomalous transport in other complex media where dynamic heterogeneity might play a major role, such as those found, e.g., in soft condensed matter, geology and ecology.Comment: 27 pages, 5 figure
    corecore