6 research outputs found

    SUBARU prime focus spectrograph: integration, testing and performance for the first spectrograph

    Full text link
    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project for Subaru telescope consists in four identical spectrographs fed by 600 fibers each. Each spectrograph is composed by an optical entrance unit that creates a collimated beam and distributes the light to three channels, two visibles and one near infrared. This paper presents the on-going effort for the tests & integration process for the first spectrograph channel: we have developed a detailed Assembly Integration and Test (AIT) plan, as well as the methods, detailed processes and I&T tools. We describe the tools we designed to assemble the parts and to test the performance of the spectrograph. We also report on the thermal acceptance tests we performed on the first visible camera unit. We also report on and discuss the technical difficulties that did appear during this integration phase. Finally, we detail the important logistic process that is require to transport the components from other country to Marseille

    Signal transduction in cells of the immune system in microgravity

    Get PDF
    Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration

    Untangling the influence of Antarctic and Southern Ocean life on clouds

    Get PDF
    Polar environments are among the fastest changing regions on the planet. It is a crucial time to make significant improvements in our understanding of how ocean and ice biogeochemical processes are linked with the atmosphere. This is especially true over Antarctica and the Southern Ocean where observations are severely limited and the environment is far from anthropogenic influences. In this commentary, we outline major gaps in our knowledge, emerging research priorities, and upcoming opportunities and needs. We then give an overview of the large-scale measurement campaigns planned across Antarctica and the Southern Ocean in the next 5 years that will address the key issues. Until we do this, climate models will likely continue to exhibit biases in the simulated energy balance over this delicate region. Addressing these issues will require an international and interdisciplinary approach which we hope to foster and facilitate with ongoing community activities and collaborations

    Solid-State NMR, X-Ray Diffraction, and Theoretical Studies of Neutral Mononuclear Molecular Bis(triphenylphosphine)silver(i) Mono-Carboxylate and -Nitrate Systems

    Get PDF
    Neutral mononuclear molecular silver(i) carboxylate complexes of the form [(Ph3P)2Ag(O2XY)] with O2XY = O2CCH2Ph, O2CCHPh2, O2CC(CH3)3, O2CCH2C(CH3)3, and O2CCF3 (compounds 1–4 and 5ÎČ) have been investigated in the solid state using single-crystal X-ray structure determinations, 1D 31P CPMAS NMR and 2D 31P–31P CPCOSY NMR measurements, and ab initio computational modelling. The results show that these complexes contain P2AgO2 molecular cores with four-coordinate silver in which the carboxylate ligands are weakly bound to the silver atoms via the two oxygen atoms giving rise to unsymmetrical chelate units. Crystal structure determinations and solid-state NMR spectra have also been analysed for the mononuclear molecular silver(i) nitrate complex [(Ph3P)2Ag(O2NO)] (9α) and two polymorphs of its toluene monosolvate (11α, ÎČ). In 9α, the two PPh3 ligands are of the same chirality, whereas in 11α, ÎČ, they are opposed. The crystalline environments in the polymorphs have been explored by way of Hirshfeld surface analyses, after quantum-mechanical isolated-molecule calculations had shown that although the molecular energies of the experimental geometries of 9α, and 11α, ÎČ are significantly different from each other and from the energies of the optimized geometries, the latter, in contrast, do not differ significantly from each other despite the conformational isomerism. It has further been shown using 9α as an example that the energy dependence on variation of the P–Ag–P angle over a range of ~15° is only ~5 kJ mol−1. All this indicates that the forces arising from crystal packing result in significant perturbations in the experimental geometries, but do not alter the stereoisomerism caused by the donor atom array around the Ag atom. In the NMR study, a strong inverse correlation has been found between 1J(107/109Ag,31P) and the Ag–P bond length across all carboxylate and nitrate compounds
    corecore