23 research outputs found

    The role of the sea-surface temperature distribution on numerically simulated cyclogenesis during ERICA

    Get PDF
    The goal was to quantify the extent to which a sea surface temperature (SST) front can influence cyclogenesis. The approach was to use the Drexel Limited-Area Mesoscale Prediction System (LAMPS) dynamical model to simulate cyclogenesis over various SST fields. Research during the past year focused on the development and testing of a four dimensional data assimilation (FDDA) technique within LAMPS. The technique is a continuous dynamical assimilation where forcing terms are added to the governing model equations to gradually nudge the model solution toward a gridded analysis. Here, the nudging is used as a dynamic initialization tool during a 12 hour preforecast to generate model balanced initial conditions for a subsequent 24 hour numerical prediction. Tests were performed to determine which variables to nudge and how to specify the four dimensional weighting function used to scale the nudging terms. To date, optimal results were obtained by nudging the u and v components of the wind along with the potential temperature. The weighting function ranged from 0 to 1 and varies in time as a quadratic polynomial. It was initialized at 0, reached its maximum at 9 hours into the preforecast, and fell back at 0 to 12 hours. The nudging terms are included in the model equations for all grid points except those within the model predicted oceanic boundary layer. This design attempts to confine changes imposed by the specified SST field to the oceanic boundary layer during the preforecast period

    Vorticity and Vertical Motions Diagnosed from Satellite Deep-Layer Temperatures

    Get PDF
    Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- ( 1000-400 hPa) and upper- (400-50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere. Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, 'bottom-up' integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale 'thickness' features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch

    Assimilation of Satellite Data in Regional Air Quality Models

    Get PDF
    In terms of important uncertainty in regional-scale air-pollution models, probably no other aspect ranks any higher than the current ability to specify clouds and soil moisture on the regional scale. Because clouds in models are highly parameterized, the ability of models to predict the correct spatial and radiative characteristics is highly suspect and subject to large error. The poor representation of cloud fields from point measurements at National Weather Services stations and the almost total absence of surface moisture availability observations has made assimilation of these variables difficult to impossible. Yet, the correct inclusion of clouds and surface moisture are of first-order importance in regional-scale photochemistry

    A Multi-Season Study of the Effects of MODIS Sea-Surface Temperatures on Operational WRF Forecasts at NWS Miami, FL

    Get PDF
    Studies at the Short-term Prediction Research and Transition (SPORT) Center have suggested that the use of Moderate Resolution Imaging Spectroradiometer (MODIS) sea-surface temperature (SST) composites in regional weather forecast models can have a significant positive impact on short-term numerical weather prediction in coastal regions. Recent work by LaCasse et al (2007, Monthly Weather Review) highlights lower atmospheric differences in regional numerical simulations over the Florida offshore waters using 2-km SST composites derived from the MODIS instrument aboard the polar-orbiting Aqua and Terra Earth Observing System satellites. To help quantify the value of this impact on NWS Weather Forecast Offices (WFOs), the SPORT Center and the NWS WFO at Miami, FL (MIA) are collaborating on a project to investigate the impact of using the high-resolution MODIS SST fields within the Weather Research and Forecasting (WRF) prediction system. The project's goal is to determine whether more accurate specification of the lower-boundary forcing within WRF will result in improved land/sea fluxes and hence, more accurate evolution of coastal mesoscale circulations and the associated sensible weather elements. The NWS MIA is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run dally initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. Each model run is initialized using the Local Analysis and Prediction System (LAPS) analyses available in AWIPS. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution (approx.9 km); however, the RTG product does not exhibit fine-scale details consistent with its grid resolution. SPORT is conducting parallel WRF EMS runs identical to the operational runs at NWS MIA except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water, The MODIS SST composites for initializing the SPORT WRF runs are generated on a 2-km grid four times daily at 0400, 0700, 1600, and 1900 UTC, based on the times of the overhead passes of the Aqua and Terra satellites. The incorporation of the MODIS SST data into the SPORT WRF runs is staggered such that SSTs are updated with a new composite every six hours in each of the WRF runs. From mid-February to July 2007, over 500 parallel WRF simulations have been collected for analysis and verification. This paper will present verification results comparing the NWS MIA operational WRF runs to the SPORT experimental runs, and highlight any substantial differences noted in the predicted mesoscale phenomena for specific cases

    First Phase 1 Double-Blind, Placebo-Controlled, Randomized Rectal Microbicide Trial Using UC781 Gel with a Novel Index of Ex Vivo Efficacy

    Get PDF
    Objectives: Successful control of the HIV/AIDS pandemic requires reduction of HIV-1 transmission at sexually-exposed mucosae. No prevention studies of the higher-risk rectal compartment exist. We report the first-in-field Phase 1 trial of a rectally-applied, vaginally-formulated microbicide gel with the RT-inhibitor UC781 measuring clinical and mucosal safety, acceptability and plasma drug levels. A first-in-Phase 1 assessment of preliminary pharmacodynamics was included by measuring changes in ex vivo HIV-1 suppression in rectal biopsy tissue after exposure to product in vivo. Methods: HIV-1 seronegative, sexually-abstinent men and women (N = 36) were randomized in a double-blind, placebo-controlled trial comparing UC781 gel at two concentrations (0.1%, 0.25%) with placebo gel (1:1:1). Baseline, single-dose exposure and a separate, 7-day at-home dosing were assessed. Safety and acceptability were primary endpoints. Changes in colorectal mucosal markers and UC781 plasma drug levels were secondary endpoints; ex vivo biopsy infectibility was an ancillary endpoint. Results: All 36 subjects enrolled completed the 7-14 week trial (100% retention) including 3 flexible sigmoidoscopies, each with 28 biopsies (14 at 10 cm; 14 at 30 cm). There were 81 Grade 1 adverse events (AEs) and 8 Grade 2; no Grade 3, 4 or procedure-related AEs were reported. Acceptability was high, including likelihood of future use. No changes in mucosal immunoinflammatory markers were identified. Plasma levels of UC781 were not detected. Ex vivo infection of biopsies using two titers of HIV-1 BaL showed marked suppression of p24 in tissues exposed in vivo to 0.25% UC781; strong trends of suppression were seen with the lower 0.1% UC781 concentration. Conclusions: Single and 7-day topical rectal exposure to both concentrations of UC781 were safe with no significant AEs, high acceptability, no detected plasma drug levels and no significant mucosal changes. Ex vivo biopsy infections demonstrated marked suppression of HIV infectibility, identifying a potential early biomarker of efficacy. (Registered at ClinicalTrials.gov; #NCT00408538). © 2011 Anton et al

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions

    Application of the NASA A-Train to Evaluate Clouds Simulated by the Weather Research and Forecast Model

    No full text
    The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events

    The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer

    No full text
    High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments
    corecore