75 research outputs found

    Cerebral palsy and the birth process

    Get PDF
    OBJECTIVE. To review the relationship between cerebral palsy and the birth process. DATA SOURCES. Medline and non-Medline literature search and personal experience. STUDY SELECTION. Articles that commented on the routinely used markers of foetal distress, such as abnormal foetal heart rate, meconium-stained liquor, and foetal acidosis. DATA EXTRACTION. Data were extracted and reviewed independently by both authors. DATA SYNTHESIS. The use of meconium alone as a predictor of cerebral palsy has a high false-positive rate of up to 99.6%. No specific foetal heart rate pattern that can accurately predict subsequent neurological impairment, and a low Apgar score is not by itself an indication of intrapartum asphyxia. The presence of encephalopathy in a neonate after birth and the association of multi-organ system dysfunction are important clues to the prior occurrence of foetal asphyxia. CONCLUSION. Cerebral palsy can be caused by asphyxia associated with the birth process. To be able to attribute cerebral palsy to peripartum asphyxia, there should be a sequence of signs during labour, delivery, and the perinatal period. Honest and sympathetic discussion between the obstetrician, paediatrician, and parents is critical throughout the counselling process.published_or_final_versio

    Modelling particle mass and particle number emissions during the active regeneration of diesel particulate filters

    Get PDF
    A new model has been developed to describe the size-dependent effects that are responsible for transient particle mass (PM) and particle number (PN) emissions observed during experiments of the active regeneration of Diesel Particulate Filters (DPFs). The model uses a population balance approach to describe the size of the particles entering and leaving the DPF, and accumulated within it. The population balance is coupled to a unit collector model that describes the filtration of the particles in the porous walls of the DPF and a reactor network model that is used to describe the geometry of the DPF. Two versions of the unit collector model were investigated. The original version, based on current literature, and an extended version, developed in this work, that includes terms to describe both the non-uniform regeneration of the cake and thermal expansion of the pores in the DPF. Simulations using the original unit collector model were able to provide a good description of the pressure drop and PM filtration efficiency during the loading of the DPF, but were unable to adequately describe the change in filtration efficiency during regeneration of the DPF. The introduction of the extended unit collector description enabled the model to describe both the timing of particle breakthrough and the final steady filtration efficiency of the hot regenerated DPF. Further work is required to understand better the transient behaviour of the system. In particular, we stress the importance that future experiments fully characterise the particle size distribution at both the inlet and outlet of the DPF.Cambridge Centre for Advanced Research and Education in Singapore (CARES), Royal Dutch Shell. Note: need to add PEMS4NANO (H2020) and EPSRC

    Modelling of secondary particulate emissions during the regeneration of Diesel Particulate Filters

    Get PDF
    © 2017 The Authors. Published by Elsevier Ltd. Significant nanoparticle emission during the regeneration of Diesel Particulate Filters (DPFs) has been observed in experiments. A numerical reactive-flow model is coupled with a sectional particle method and phenomenological filtration model to describe the behavior of the DPF, and in particular the evolution of soot particle size distribution. The ability of the model to predict the pressure drop and flow profile in the DPF is critically assessed against experimental and simulated results from the literature. The capability to describe the impact of oxidative fragmentation on the size distribution of trapped particles is demonstrated. The model is shown to be able to qualitatively describe the decrease in average soot particle size during regeneration which will allow better prediction of particle number emissions

    Intramuscular midazolam, olanzapine, or haloperidol for the management of acute agitation: A multi-centre, double-blind, randomised clinical trial

    Get PDF
    © 2021 The Authors Background: The safety and effectiveness of intramuscular olanzapine or haloperidol compared to midazolam as the initial pharmacological treatment for acute agitation in emergency departments (EDs) has not been evaluated. Methods: A pragmatic, randomised, double-blind, active-controlled trial was conducted from December 2014 to September 2019, in six Hong Kong EDs. Patients (aged 18–75 years) with undifferentiated acute agitation requiring parenteral sedation were randomised to 5 mg intramuscular midazolam (n = 56), olanzapine (n = 54), or haloperidol (n = 57). Primary outcomes were time to adequate sedation and proportion of patients who achieved adequate sedation at each follow-up interval. Sedation levels were measured on a 6-level validated scale (ClinicalTrials.gov Identifier: NCT02380118). Findings: Of 206 patients randomised, 167 (mean age, 42 years; 98 [58·7%] male) were analysed. Median time to sedation for IM midazolam, olanzapine, and haloperidol was 8·5 (IQR 8·0), 11·5 (IQR 30·0), and 23·0 (IQR 21·0) min, respectively. At 60 min, similar proportions of patients were adequately sedated (98%, 87%, and 97%). There were statistically significant differences for time to sedation with midazolam compared to olanzapine (p = 0·03) and haloperidol (p = 0·002). Adverse event rates were similar across the three arms. Dystonia (n = 1) and cardiac arrest (n = 1) were reported in the haloperidol group. Interpretation: Midazolam resulted in faster sedation in patients with undifferentiated agitation in the emergency setting compared to olanzapine and haloperidol. Midazolam and olanzapine are preferred over haloperidol's slower time to sedation and potential for cardiovascular and extrapyramidal side effects. Funding: Research Grants Council, Hong Kong

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances have lead to the rapid increase in availability of single nucleotide polymorphisms (SNPs) in a range of organisms, and there is a general optimism that SNPs will become the marker of choice for a range of evolutionary applications. Here, comparisons between 300 polymorphic SNPs and 14 short tandem repeats (STRs) were conducted on a data set consisting of approximately 500 Atlantic salmon arranged in 10 samples/populations.</p> <p>Results</p> <p>Global F<sub>ST </sub>ranged from 0.033-0.115 and -0.002-0.316 for the 14 STR and 300 SNP loci respectively. Global F<sub>ST </sub>was similar among 28 linkage groups when averaging data from mapped SNPs. With the exception of selecting a panel of SNPs taking the locus displaying the highest global F<sub>ST </sub>for each of the 28 linkage groups, which inflated estimation of genetic differentiation among the samples, inferred genetic relationships were highly similar between SNP and STR data sets and variants thereof. The best 15 SNPs (30 alleles) gave a similar level of self-assignment to the best 4 STR loci (83 alleles), however, addition of further STR loci did not lead to a notable increase assignment whereas addition of up to 100 SNP loci increased assignment.</p> <p>Conclusion</p> <p>Whilst the optimal combinations of SNPs identified in this study are linked to the samples from which they were selected, this study demonstrates that identification of highly informative SNP loci from larger panels will provide researchers with a powerful approach to delineate genetic relationships at the individual and population levels.</p

    The Irish DNA Atlas: Revealing Fine-Scale Population Structure and History within Ireland

    Get PDF
    The extent of population structure within Ireland is largely unknown, as is the impact of historical migrations. Here we illustrate fine-scale genetic structure across Ireland that follows geographic boundaries and present evidence of admixture events into Ireland. Utilising the ‘Irish DNA Atlas’, a cohort (n = 194) of Irish individuals with four generations of ancestry linked to specific regions in Ireland, in combination with 2,039 individuals from the Peoples of the British Isles dataset, we show that the Irish population can be divided in 10 distinct geographically stratified genetic clusters; seven of ‘Gaelic’ Irish ancestry, and three of shared Irish-British ancestry. In addition we observe a major genetic barrier to the north of Ireland in Ulster. Using a reference of 6,760 European individuals and two ancient Irish genomes, we demonstrate high levels of North-West French-like and West Norwegian-like ancestry within Ireland. We show that that our ‘Gaelic’ Irish clusters present homogenous levels of ancient Irish ancestries. We additionally detect admixture events that provide evidence of Norse-Viking gene flow into Ireland, and reflect the Ulster Plantations. Our work informs both on Irish history, as well as the study of Mendelian and complex disease genetics involving populations of Irish ancestry

    Population structure and genome-wide patterns of variation in Ireland and Britain

    Get PDF
    Located off the northwestern coast of the European mainland, Britain and Ireland were among the last regions of Europe to be colonized by modern humans after the last glacial maximum. Further, the geographical location of Britain, and in particular of Ireland, is such that the impact of historical migration has been minimal. Genetic diversity studies applying the Y chromosome and mitochondrial systems have indicated reduced diversity and an increased population structure across Britain and Ireland relative to the European mainland. Such characteristics would have implications for genetic mapping studies of complex disease. We set out to further our understanding of the genetic architecture of the region from the perspective of (i) population structure, (ii) linkage disequilibrium (LD), (iii) homozygosity and (iv) haplotype diversity (HD). Analysis was conducted on 3654 individuals from Ireland, Britain (with regional sampling in Scotland), Bulgaria, Portugal, Sweden and the Utah HapMap collection. Our results indicate a subtle but clear genetic structure across Britain and Ireland, although levels of structure were reduced in comparison with average cross-European structure. We observed slightly elevated levels of LD and homozygosity in the Irish population compared with neighbouring European populations. We also report on a cline of HD across Europe with greatest levels in southern populations and lowest levels in Ireland and Scotland. These results are consistent with our understanding of the population history of Europe and promote Ireland and Scotland as relatively homogenous resources for genetic mapping of rare variants
    • …
    corecore