223 research outputs found

    Broad-band X-ray analysis of local mid-infrared selected Compton-thick AGN candidates

    Get PDF
    The estimate of the number and space density of obscured AGN over cosmic time still represents an open issue. While the obscured AGN population is a key ingredient of the X-ray background synthesis models and is needed to reproduce its shape, a complete census of obscured AGN is still missing. Here we test the selection of obscured sources among the local 12-micron sample of Seyfert galaxies. Our selection is based on a difference up to three orders of magnitude in the ratio between the AGN bolometric luminosity, derived from the spectral energy distribution (SED) decomposition, and the same quantity obtained by the published XMM-Newton 2-10 keV luminosity. The selected sources are UGC05101, NGC1194 and NGC3079 for which the available X-ray wide bandpass, from Chandra and XMM-Newton plus NuSTAR data, extending to energies up to ~30-45 keV, allows us an accurate determination of the column density, and hence of the true intrinsic power. The newly derived NH values clearly indicate heavy obscuration (about 1.2, 2.1 and 2.4 x10^{24} cm-2 for UGC05101, NGC1194 and NGC3079, respectively) and are consistent with the prominent silicate absorption feature observed in the Spitzer-IRS spectra of these sources (at 9.7 micron rest frame). We finally checked that the resulting X-ray luminosities in the 2-10 keV band are in good agreement with those derived from the mid-IR band through empirical L_MIR-L_X relations.Comment: 14 pages, 6 figures, accepted for publication in MNRA

    NuSTAR reveals the extreme properties of the super-Eddington accreting supermassive black hole in PG 1247+267

    Get PDF
    PG1247+267 is one of the most luminous known quasars at z ~ 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (Γ = 2.3 ± 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of ~100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities

    The Xmm-Newton Spectrum of a Candidate Recoiling Supermassive Black Hole: An Elusive Inverted P-Cygni Profile

    Get PDF
    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ~6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ~20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW \u3c 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line

    Type 2 Quasars at the heart of dust-obscured galaxies (DOGs) at high z

    Get PDF
    Dust‐obscured galaxies (DOGs) represent a recently‐discovered, intriguing class of mid‐IR luminous sources at high redshifts. Evidence is mounting that DOGs (selected on the basis of extreme optical/mid‐IR color cut and high mid‐IR flux level) may represent systems caught in the process of host galaxy formation and intense SMBH growth. Here we report the results of an X‐ray spectroscopic survey aimed at studying the X‐ray properties of these sources and establishing the fraction of Type 2 quasars among them

    The WISSH Quasars Project III. X-ray properties of hyper-luminous quasars

    Full text link
    We perform a survey of the X-ray properties of 41 objects from the WISE/SDSS selected Hyper-luminous (WISSH) quasars sample, composed by 86 broad-line quasars (QSOs) with bolometric luminosity LBol≄2×1047 erg s−1L_{Bol}\geq 2\times 10^{47}\,erg\, s^{-1}, at z~2-4. All but 3 QSOs show unabsorbed 2-10 keV luminosities L2−10≄1045 erg s−1L_{2-10}\geq10^{45} \,erg \,s^{-1}. Thanks to their extreme radiative output across the Mid-IR-to-X-ray range, WISSH QSOs offer the opportunity to significantly extend and validate the existing relations involving L2−10L_{2-10}. We study L2−10L_{2-10} as a function of (i) X-ray-to-Optical (X/O) flux ratio, (ii) mid-IR luminosity (LMIRL_{MIR}), (iii) LBolL_{Bol} as well as (iv) αOX\alpha_{OX} vs. the 2500A˚\mathring{A} luminosity. We find that WISSH QSOs show very low X/O(<0.1) compared to typical AGN values; L2−10/LMIRL_{2-10}/L_{MIR} ratios significantly smaller than those derived for AGN with lower luminosity; large X-ray bolometric corrections kBol,X∌k_{\rm Bol,X}\sim 100-1000; and steep −2<αOX<−1.7-2<\alpha_{OX}<-1.7. These results lead to a scenario where the X-ray emission of hyper-luminous quasars is relatively weaker compared to lower-luminosity AGN. Models predict that such an X-ray weakness can be relevant for the acceleration of powerful high-ionization emission line-driven winds, commonly detected in the UV spectra of WISSH QSOs, which can in turn perturb the X-ray corona and weaken its emission. Accordingly, hyper-luminous QSOs represent the ideal laboratory to study the link between the AGN energy output and wind acceleration. Additionally, WISSH QSOs show very large BH masses (log⁥[MBH/M⊙]\log[M_{\rm BH}/M_{\odot}]>9.5). This enables a more robust modeling of the Γ−MBH\Gamma-M_{BH} relation by increasing the statistics at high masses. We derive a flatter Γ\Gamma dependence than previously found over the broad range 5 <log⁥(MBH/M⊙)\log(M_{\rm BH}/M_{\odot}) < 11.Comment: 20 pages, 14 Figures. Accepted for publication on A&

    Blowin' in the wind: both `negative' and `positive' feedback in an obscured high-z Quasar

    Get PDF
    Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation in galaxies, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring `positive' AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. Here we present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO detected in the XMM-COSMOS survey, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Ha emission and the rest frame U band flux from HST-ACS imaging enable to map the current star formation in the host galaxy: both tracers independently show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (`negative feedback'), but also triggering star formation by outflow induced pressure at the edges (`positive feedback'). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.Comment: 9 pages, 5 figures, accepted for publication in Ap

    High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    Get PDF
    Extreme Optical/Mid‐IR color cuts have been used to uncover a population of dust‐enshrouded, mid‐IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton‐thick quasar at the heart of these systems. Nonetheless, the X‐ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X‐ray spectroscopic study of a large sample of 44 extreme dust‐obscured galaxies (EDOGs) with F_(24ÎŒm)/F_R > 2000 and F_(24ÎŒm) > 1.3 mJy selected from a 6 deg^2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X‐ray luminous, absorbed z > 1 quasars which is mostly missed in the traditional optical/X‐ray surveys performed so far. Advances in the understanding of the X‐ray properties of these recently‐discovered sources by Simbol‐X observations will be also discussed

    The Chandra-COSMOS survey IV: X-ray spectra of the bright sample

    Full text link
    We present the X-ray spectral analysis of the 390 brightest extragalactic sources in the Chandra-COSMOS catalog, showing at least 70 net counts in the 0.5-7 keV band. This sample has a 100% completeness in optical-IR identification, with 75% of the sample having a spectroscopic redshift and 25% a photometric redshift. Our analysis allows us to accurately determine the intrinsic absorption, the broad band continuum shape ({\Gamma}) and intrinsic L(2-10) distributions, with an accuracy better than 30% on the spectral parameters for 95% of the sample. The sample is equally divided in type-1 (49.7%) and type-2 AGN (48.7%) plus few passive galaxies at low z. We found a significant difference in the distribution of {\Gamma} of type-1 and type-2, with small intrinsic dispersion, a weak correlation of {\Gamma} with L(2-10) and a large population (15% of the sample) of high luminosity, highly obscured (QSO2) sources. The distribution of the X ray/Optical flux ratio (Log(FX /Fi)) for type-1 is narrow (0 < X/O < 1), while type-2 are spread up to X/O = 2. The X/O correlates well with the amount of X-ray obscuration. Finally, a small sample of Compton thick candidates and peculiar sources is presented. In the appendix we discuss the comparison between Chandra and XMM-Newton spectra for 280 sources in common. We found a small systematic difference, with XMM-Newton spectra that tend to have softer power-laws and lower obscuration.Comment: 20 pages, 16 figures. Accepted for Pubblication in MNRAS, 2013 February

    The XMM deep survey in the CDF-S VIII. X-ray properties of the two brightest sources

    Get PDF
    We present results from the deep XMM-Newton observations of the two brightest X-ray sources in the Chandra Deep Field South (CDFS), PID 203 (z=0.544) and PID 319 (z=0.742). The long exposure of 2.5 Ms over a 10 year period (net 4 yr with a 6 yr gap) makes it possible to obtain high quality X-ray spectra of these two Type I AGN with X-ray luminosity of 10^44 erg/s, typical luminosity for low-redshift PG quasars, track their X-ray variability both in flux and spectral shape. Both sources showed X-ray flux variability of ~10-20 per cent in rms which is similar in the soft (0.5-2 keV) and hard (2-7 keV) bands. PID 203, which has evidence for optical extinction, shows modest amount of absorption (nH~1e21cm^-2) in the X-ray spectrum. Fe K emission is strongly detected in both objects with EW~0.2 keV. The lines in both objects are moderately broad and exhibit marginal evidence for variability in shape and flux, indicating that the bulk of the line emission come from their accretion disks rather than distant tori.Comment: 12 pages, 19 figures, accepted for publication in A&
    • 

    corecore