392 research outputs found

    Understanding the differential hygienic behavior towards drone brood in Apis mellifera colonies from Argentina

    Get PDF
    Brood diseases of Apis mellifera colonies constitute a main problem of beekeeping worldwide. Worker bees display a social health mechanism that consists in detecting, uncapping and removing dead or diseased brood from the hive: the hygienic behavior (CH). These activities are induced by olfactory cues and have been described as associated to hygiene of brood parasitized by Varroa destructor. This mite have preference for drone brood, but the efficiency of CH towards their cells is significantly lower compared with cells of worker brood, being left uninspected by workers. Some authors suggest that a possible cause of the CH differences is due to the cell wax cap of drone brood (thicker than worker cells) acting as a barrier to volatile compounds and obstructing disease detection. The aims of this research were to study the differential CH towards worker and drone brood belonging to highly hygienic colonies from Argentina, and to explore the importance of drone cell wax cap as an interfering factor in the transmission of chemical signals. To this end, removal percentages of pin-killed worker and drone brood were recorded and an innovative cell wax cap exchange was implemented in three different treatments: pin-killed worker pupa with a healthy drone cell wax cap; a healthy worker pupa with a pin-killed drone cell wax cap; and a healthy worker pupa covered with a healthy drone cell wax cap (control). Results showed a greater removal towards worker cells than drone cells. For the cell wax cap exchange experiment, we found that the removal of pin-killed worker pupae covered with healthy drone cell wax cap was significantly high, while the removal of healthy worker pupae covered with pin-killed drone opercula was low. These preliminary results confirms a differential behavior between both type of brood cells and suggests that the cell wax cap of drone brood is not interfering the detection of chemical compounds from the diseased brood by worker bees, regardless the thickness. This work contributes to a better understanding of the detection activity of different types of diseased brood and provides information useful to control strategies of varroosis and other brood diseases.Fil: Dowd, D. Duggan. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Muntaabski, Irina. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion En Ciencias Veterinarias y Agronomicas. Instituto de Agrobiotecnologia y Biologia Molecular. Grupo Vinculado Instituto de Genetica "ewald A. Favret" Al Iabimo | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Agrobiotecnologia y Biologia Molecular. Grupo Vinculado Instituto de Genetica "ewald A. Favret" Al Iabimo.; ArgentinaFil: Russo, R. M.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Landi, L.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Lanzavecchia, S. B.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Cladera, J. L.. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Palacio, M. A.. Instituto Nacional de Tecnología Agropecuaria; ArgentinaFil: Bedascarrabure, E.. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion de Agroindustria. Instituto de Ingeniería Rural.; ArgentinaFil: Scannapieco, Alejandra Carla. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion En Ciencias Veterinarias y Agronomicas. Instituto de Agrobiotecnologia y Biologia Molecular. Grupo Vinculado Instituto de Genetica "ewald A. Favret" Al Iabimo | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Agrobiotecnologia y Biologia Molecular. Grupo Vinculado Instituto de Genetica "ewald A. Favret" Al Iabimo.; ArgentinaFil: Liendo, María Clara. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion En Ciencias Veterinarias y Agronomicas. Instituto de Agrobiotecnologia y Biologia Molecular. Grupo Vinculado Instituto de Genetica "ewald A. Favret" Al Iabimo | Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Agrobiotecnologia y Biologia Molecular. Grupo Vinculado Instituto de Genetica "ewald A. Favret" Al Iabimo.; Argentina46th Apimondia International Apicultural Congress: Beekeeping together within agricultureQuébecCanadáInternational Federation of Beekeepers' AssociationsCanadian Honey Counci

    Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature.

    Get PDF
    Myasthenia gravis (MG) is an autoimmune disease characterized by impaired neuromuscular signaling due to autoantibodies targeting the acetylcholine receptor. Although its auto-antigens and effector mechanisms are well defined, the cellular and molecular drivers underpinning MG remain elusive. Here, we employed high-dimensional single-cell mass and spectral cytometry of blood and thymus samples from MG patients in combination with supervised and unsupervised machine-learning tools to gain insight into the immune dysregulation underlying MG. By creating a comprehensive immune map, we identified two dysregulated subsets of inflammatory circulating memory T helper (Th) cells. These signature ThCD103 and ThGM cells populated the diseased thymus, were reduced in the blood of MG patients, and were inversely correlated with disease severity. Both signature Th subsets rebounded in the blood of MG patients after surgical thymus removal, indicative of their role as cellular markers of disease activity. Together, this in-depth analysis of the immune landscape of MG provides valuable insight into disease pathogenesis, suggests novel biomarkers and identifies new potential therapeutic targets for treatment

    The Neonatal Fc Receptor (FcRn) Enhances Human Immunodeficiency Virus Type 1 (HIV-1) Transcytosis across Epithelial Cells

    Get PDF
    The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure

    Structural Properties of MHC Class II Ligands, Implications for the Prediction of MHC Class II Epitopes

    Get PDF
    Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove. Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100–200 peptides per allele) to derive accurate description of their binding motif. Little work has been performed characterizing structural properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-glycosylation in our prediction methods but this additional information was found not to improve prediction performance. In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the accessibility of peptides to the MHC class II molecule

    Functional Dichotomy between NKG2D and CD28-Mediated Co-Stimulation in Human CD8+ T Cells

    Get PDF
    Both CD28 and NKG2D can function as co-stimulatory receptors in human CD8+ T cells. However, their independent functional contributions in distinct CD8+ T cell subsets are not well understood. In this study, CD8+ T cells in human peripheral blood- and lung-derived lymphocytes were analyzed for CD28 and NKG2D expression and function. We found a higher level of CD28 expression in PBMC-derived naïve (CD45RA+CD27+) and memory (CD45RA−CD27+) CD8+ T cells (CD28Hi), while its expression was significantly lower in effector (CD45RA+CD27−) CD8+ T cells (CD28Lo). Irrespective of the differences in the CD28 levels, NKG2D expression was comparable in all three CD8+ T cell subsets. CD28 and NKG2D expressions followed similar patterns in human lung-resident GILGFVFTL/HLA-A2-pentamer positive CD8+ T cells. Co-stimulation of CD28Lo effector T cells via NKG2D significantly increased IFN-γ and TNF-α levels. On the contrary, irrespective of its comparable levels, NKG2D-mediated co-stimulation failed to augment IFN-γ and TNF-α production in CD28Hi naïve/memory T cells. Additionally, CD28-mediated co-stimulation was obligatory for IL-2 generation and thereby its production was limited only to the CD28Hi naïve/memory subsets. MICA, a ligand for NKG2D was abundantly expressed in the tracheal epithelial cells, validating the use of NKG2D as the major co-stimulatory receptor by tissue-resident CD8+ effector T cells. Based on these findings, we conclude that NKG2D may provide an expanded level of co-stimulation to tissue-residing effector CD8+ T cells. Thus, incorporation of co-stimulation via NKG2D in addition to CD28 is essential to activate tumor or tissue-infiltrating effector CD8+ T cells. However, boosting a recall immune response via memory CD8+ T cells or vaccination to stimulate naïve CD8+ T cells would require CD28-mediated co-stimulation

    Enhanced Monocyte Response and Decreased Central Memory T Cells in Children with Invasive Staphylococcus aureus Infections

    Get PDF
    Staphylococcus aureus has emerged as a significant pathogen causing severe invasive disease in otherwise healthy people. Despite considerable advances in understanding the epidemiology, resistance mechanisms, and virulence factors produced by the bacteria, there is limited knowledge of the in vivo host immune response to acute, invasive S. aureus infections. Herein, we report that peripheral blood mononuclear cells from patients with severe S. aureus infections demonstrate a distinctive and robust gene expression profile which is validated in a distinct group of patients and on a different microarray platform. Application of a systems-wide modular analysis framework reveals significant over-expression of innate immunity genes and under-expression of genes related to adaptive immunity. Simultaneous flow cytometry analyses demonstrated marked alterations in immune cell numbers, with decreased central memory CD4 and CD8 T cells and increased numbers of monocytes. CD14+ monocyte numbers significantly correlated with the gene expression levels of genes related to the innate immune response. These results demonstrate the value of applying a systems biology approach that reveals the significant alterations in the components of circulating blood lymphocytes and monocytes in invasive S. aureus infections

    Double-Positive CD21+CD27+ B Cells Are Highly Proliferating Memory Cells and Their Distribution Differs in Mucosal and Peripheral Tissues

    Get PDF
    Several B-cell defects arise in HIV infected patients, particularly in patients with chronic infection and high viral load. Loss of memory B cells (CD27(+) B cells) in peripheral blood and lymphoid tissues is one of the major B cell dysfunctions in HIV and simian immunodeficiency virus (SIV) infection. Despite several studies, definitive identification of memory B cells based on CD27 surface expression has not been described. Similarly, the rates of cell turnover in different B cell subpopulation from lymphoid and mucosal tissues have not been well documented. In this study, we demonstrate the presence of memory B cell populations and define their distribution, frequency and immunophenotype with regards to activation, proliferation, maturation, and antibody production in normal rhesus macaques from different lymphoid tissues.Thirteen healthy, uninfected rhesus macaques were selected for this study. CD20(+) B cells were isolated from peripheral blood and sorted based on CD27 and CD21 surface markers to define memory B cell population. All the B cell subpopulation was further characterized phenotypically and their cell turnover rates were evaluated in vivo following bromodeoxyuridine (BrdU) inoculation. Double positive (DP) CD21(+)CD27(+) B cells in both peripheral and lymphoid tissues are memory B cells, able to produce antibody by polyclonal activation, and without T cell help. Peripheral and lymphoid DP CD21(+)CD27(+) B cells were also able to become activated and proliferate at higher rates than other B cell subpopulations. Increased turnover of tonsillar memory B cells were identified compared to other tissues examined.We suggest that this DP memory B cells play a major role in the immune system and their function and proliferation might have an important role in HIV/SIV mediated B cell dysregulation and pathogenesis

    Effects of Intracellular Calcium and Actin Cytoskeleton on TCR Mobility Measured by Fluorescence Recovery

    Get PDF
    Background: The activation of T lymphocytes by specific antigen is accompanied by the formation of a specialized signaling region termed the immunological synapse, characterized by the clustering and segregation of surface molecules and, in particular, by T cell receptor (TCR) clustering. Methodology/Principal Findings: To better understand TCR motion during cellular activation, we used confocal microscopy and photo-bleaching recovery techniques to investigate the lateral mobility of TCR on the surface of human T lymphocytes under various pharmacological treatments. Using drugs that cause an increase in intracellular calcium, we observed a decrease in TCR mobility that was dependent on a functional actin cytoskeleton. In parallel experiments measurement of filamentous actin by FACS analysis showed that raising intracellular calcium also causes increased polymerization of the actin cytoskeleton. These in vitro results were analyzed using a mathematical model that revealed effective binding parameters between TCR and the actin cytoskeleton. Conclusion/Significance: We propose, based on our results, that increase in intracellular calcium levels leads to actin polymerization and increases TCR/cytoskeleton interactions that reduce the overall mobility of the TCR. In a physiological setting, this may contribute to TCR re-positioning at the immunological synapse

    In-Depth Analysis of the Antibody Response of Individuals Exposed to Primary Dengue Virus Infection

    Get PDF
    Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization

    Generation of dendritic cell-based vaccines for cancer therapy

    Get PDF
    Dendritic cells play a major role in the generation of immunity against tumour cells. They can be grown under various culture conditions, which influence the phenotypical and functional properties of dendritic cells and thereby the consecutive immune response mainly executed by T cells. Here we discuss various conditions, which are important during generation and administration of dendritic cells to elicit a tumouricidal T cell-based immune response
    corecore