2,307 research outputs found

    Surface effects on the Mott-Hubbard transition in archetypal V2_2O3_3

    Full text link
    We present an experimental and theoretical study exploring surface effects on the evolution of the metal-insulator transition in the model Mott-Hubbard compound Cr-doped V2_2O3_3. We find a microscopic domain formation that is clearly affected by the surface crystallographic orientation. Using scanning photoelectron microscopy and X-ray diffraction, we find that surface defects act as nucleation centers for the formation of domains at the temperature-induced isostructural transition and favor the formation of microscopic metallic regions. A density functional theory plus dynamical mean field theory study of different surface terminations shows that the surface reconstruction with excess vanadyl cations leads to doped, and hence more metallic surface states, explaining our experimental observations.Comment: 5 pages, 4 figure

    Domain size effects on the dynamics of a charge density wave in 1T-TaS2

    Full text link
    Recent experiments have shown that the high temperature incommensurate (I) charge density wave (CDW) phase of 1T-TaS2 can be photoinduced from the lower temperature, nearly commensurate (NC) CDW state. Here we report a time-resolved x-ray diffraction study of the growth process of the photoinduced I-CDW domains. The layered nature of the material results in a marked anisotropy in the size of the photoinduced domains of the I-phase. These are found to grow self-similarly, their shape remaining unchanged throughout the growth process. The photoinduced dynamics of the newly formed I-CDW phase was probed at various stages of the growth process using a double pump scheme, where a first pump creates I-CDW domains and a second pump excites the newly formed I-CDW state. We observe larger magnitudes of the coherently excited I-CDW amplitude mode in smaller domains, which suggests that the incommensurate lattice distortion is less stable for smaller domain sizes.Comment: 8 pages, 8 figure

    Watching the birth of a charge density wave order: diffraction study on nanometer-and picosecond-scales

    Full text link
    Femtosecond time-resolved X-ray diffraction is used to study a photo-induced phase transition between two charge density wave (CDW) states in 1T-TaS2_2, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photo-induced I-CDW phase then develops through a nucleation/growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a non-conservative order parameter.Comment: 6 pages, 5 figure

    Collecting Critical Data to Assess the Sustainability of Rural Infrastructure in Low-Income Countries

    Get PDF
    Rural water systems in low-income countries often fail to deliver potable water sustainably.Reasons include socio-economic, financial, and technical challenges that are specific to the community. Improved assessment methods are critical if decision makers want to provide sustainable solutions; however, to be useful, such methods require substantial data about the complex interaction between people, water, and infrastructure. Such interaction is affected by, and in turn, affects the behavior of community members regarding water usage, resources for infrastructure maintenance, and choice of assets. Unfortunately, much of these data are not readily available, in a large part because of the site-specific context associated with each rural community. Because of the difficulty and expense in obtaining site-specific data, it is important to identify the most critical needs for field studies versus the data that can be obtained from sources such as non-governmental organizations and the general literature.We examine this issue by first using an extensive data set from Malawi to identify the critical data needs. We then present several examples of field studies in Honduras and Uganda where we collected some of that critical data. Throughout, we discuss best practices for conducting and using focused field studies versus the general literature

    Quantum squeezing of optical dissipative structures

    Full text link
    We show that any optical dissipative structure supported by degenerate optical parametric oscillators contains a special transverse mode that is free from quantum fluctuations when measured in a balanced homodyne detection experiment. The phenomenon is not critical as it is independent of the system parameters and, in particular, of the existence of bifurcations. This result is a consequence of the spatial symmetry breaking introduced by the dissipative structure. Effects that could degrade the squeezing level are considered.Comment: 4 pages and a half, 1 fugure. Version to appear in Europhysics Letter

    Improving the Robustness of the Advanced LIGO Detectors to Earthquakes

    Get PDF
    Teleseismic, or distant, earthquakes regularly disrupt the operation of ground–based gravitational wave detectors such as Advanced LIGO. Here, we present EQ mode, a new global control scheme, consisting of an automated sequence of optimized control filters that reduces and coordinates the motion of the seismic isolation platforms during earthquakes. This, in turn, suppresses the differential motion of the interferometer arms with respect to one another, resulting in a reduction of DARM signal at frequencies below 100 mHz. Our method greatly improved the interferometers\u27 capability to remain operational during earthquakes, with ground velocities up to 3.9 ÎŒm s−1 rms in the beam direction, setting a new record for both detectors. This sets a milestone in seismic controls of the Advanced LIGO detectors\u27 ability to manage high ground motion induced by earthquakes, opening a path for further robust operation in other extreme environmental conditions
    • 

    corecore