13 research outputs found

    Elastodynamics of a soft strip subject to a large deformation

    Full text link
    To produce sounds, we adjust the tension of our vocal cords to shape their properties and control the pitch. This efficient mechanism offers inspiration for designing reconfigurable materials and adaptable soft robots. However, understanding how flexible structures respond to a significant static strain is not straightforward. This complexity also limits the precision of medical imaging when applied to tensioned organs like muscles, tendons, ligaments and blood vessels among others. In this article, we experimentally and theoretically explore the dynamics of a soft strip subject to a substantial static extension, up to 180\%. Our observations reveal a few intriguing effects, such as the resilience of certain vibrational modes to a static deformation. These observations are supported by a model based on the incremental displacement theory. This has promising practical implications for characterizing soft materials but also for scenarios where external actions can be used to tune properties

    Acoustics of bubbly media : Application to the design of metamaterials and to bubble manipulation

    No full text
    Lorsqu’elle est excitée par une onde ultrasonore, une bulle d’air oscille. Les mouvementsl’interface eau-air entrainent un déplacement local du fluide hôte qui devient lesiège de la propagation d’une onde diffusée. Ce mécanisme très simple est fidèlementdécrit par le formalisme de Rayleigh-Plesset datant du début du siècle dernier. Abasse fréquence, au voisinage de la résonance de Minnaert, les oscillations de la bullepeuvent devenir particulièrement amples et la diffusion extrêmement efficace. Dansun environnement réaliste, les bulles sont présentes en grand nombre et la descriptionse complique sensiblement puisque la propagation résulte de l’interférence entre uneinfinité de séquences de diffusion.Au cours de cette thèse, nous introduirons les modèles de milieux effectifs quipermettent de prédire le comportement de fluides bulleux désordonnés. Après avoirété confrontées aux résultats issus de la simulation numérique, ces théories effectivesnous permettront de concevoir des matériaux désordonnés aux propriétés étonnantescomme la superfocalisation ou la réfraction négative.Nous envisagerons également l’étude d’arrangements cristallins et verrons que lapériodicité induit des modifications sensibles dans le comportement du milieu tout enconstituant un levier de contrôle efficace.Enfin, la bulle est susceptible de se mouvoir et, par conséquent, de ressentir desforces de pression de radiation. En particulier, Nous verrons comment la force deBjerknes secondaire, issue du champ diffusé par une bulle vers l’une de ses voisines,peut être exploitée afin de manipuler une ou plusieurs bulles mobiles au voisinaged’une ou plusieurs bulles piégées.A bubble undergoing an acoustic wave is likely to oscillate. The displacement of theair-fluid interface generates a local compression of the outer fluid where a scatteredwave is thus created. This very simple mechanism has been successfully described bythe famous Rayleigh-Plesset formula derived at the beginning of the previous century.At low frequencies, the resonant behavior (Minnaert) is responsible for a strongenhancement of the oscillations of the bubble which thus becomes a very efficientscatterer. In a realistic media, bubbles are not isolated. The interferences occurringbetween an infinity of scattering sequences make the description of the propagation alot harder to achieve.In this thesis, we introduce the effective theories that are classically adopted todescribe random bubbly liquids. After being compared to our numerical results, thesetheories are used in order to design bubbly materials featuring some interesting propertiessuch as superfocusing or negative refraction.The case of periodic assembly is addressed as well for both a simple square latticebubble raft and a cubic centered faces bi-periodic crystal. We show that the periodicityinduces an explicit modification in the dispersion of the medium and offers asimple tunable parameter.At last, we focus on the possibility for the bubble to move inside the host fluid andwhich is thus likely to experience an acoustic radiation pressure called Bjerknes force.We show how the secondary Bjerknes force, resulting from the wave scattered by abubble toward its neighbors, can be exploited in order to manipulate one or severalfree bubble flowing near one or several trapped bubbles

    Acoustique des milieux bulleux: Applications à la conception de métamatériaux et à la manipulation de bulles

    No full text
    A bubble undergoing an acoustic wave is likely to oscillate. The displacement of the air-fluid interface generates a local compression of the outer fluid where a scattered wave is thus created. This very simple mechanism has been successfully described by the famous Rayleigh-Plesset formula derived at the beginning of the previous century. At low frequencies, the resonant behavior (Minnaert) is responsible for a strongenhancement of the oscillations of the bubble which thus becomes a very efficient scatterer. In a realistic media, bubbles are not isolated. The interferences occurring between an infinity of scattering sequences make the description of the propagation a lot harder to achieve.In this thesis, we introduce the effective theories that are classically adopted to describe random bubbly liquids. After being compared to our numerical results, these theories are used in order to design bubbly materials featuring some interesting properties such as superfocusing or negative refraction. The case of periodic assembly is addressed as well for both a simple square lattice bubble raft and a cubic centered faces bi-periodic crystal. We show that the periodicity induces an explicit modification in the dispersion of the medium and offers a simple tunable parameter.At last, we focus on the possibility for the bubble to move inside the host fluid and which is thus likely to experience an acoustic radiation pressure called Bjerknes force. We show how the secondary Bjerknes force, resulting from the wave scattered by a bubble toward its neighbors, can be exploited in order to manipulate one or several free bubble flowing near one or several trapped bubbles.Lorsqu’elle est excitée par une onde ultrasonore, une bulle d’air oscille. Les mouvements de l’interface eau-air entrainent un déplacement local du fluide hôte qui devient le siège de la propagation d’une onde diffusée. Ce mécanisme très simple est fidèlement décrit par le formalisme de Rayleigh-Plesset datant du début du siècle dernier. À basse fréquence, au voisinage de la résonance de Minnaert, les oscillations de la bullepeuvent devenir particulièrement amples et la diffusion extrêmement efficace. Dans un environnement réaliste, les bulles sont présentes en grand nombre et la description se complique sensiblement puisque la propagation résulte de l’interférence entre une infinité de séquences de diffusion.Au cours de cette thèse, nous introduirons les modèles de milieux effectifs qui permettent de prédire le comportement de fluides bulleux désordonnés. Après avoir été confrontées aux résultats issus de la simulation numérique, ces théories effectives nous permettront de concevoir des matériaux désordonnés aux propriétés étonnantes comme la superfocalisation ou la réfraction négative. Nous envisagerons également l’étude d’arrangements cristallins et verrons que la périodicité induit des modifications sensibles dans le comportement du milieu tout en constituant un levier de contrôle efficace. Enfin, la bulle est susceptible de se mouvoir et, par conséquent, de ressentir des forces de pression de radiation. En particulier, Nous verrons comment la force de Bjerknes secondaire, issue du champ diffusé par une bulle vers l’une de ses voisines, peut être exploitée afin de manipuler une ou plusieurs bulles mobiles au voisinage d’une ou plusieurs bulles piégées

    Super-Absorption of Acoustic Waves with Bubble Meta-Screens

    Get PDF
    International audienceA bubble meta-screen, i.e. a single layer of gas inclusions in a soft solid, can be modeled as an acoustic open resonator, whose behavior is well captured by a simple analytical expression. We show that by tuning the parameters of the meta-screen, acoustic super-absorption can be achieved over a broad frequency range, which is confirmed by finite element simulations and experiments. Bubble meta-screens can thus be used as ultra thin coatings for turning acoustic reflectors into perfect absorbers
    corecore