21 research outputs found

    A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model

    Get PDF
    Background: Malaria elimination strategies require a thorough understanding of parasite transmission from human to mosquito. A clinical model to induce gametocytes to understand their dynamics and evaluate transmission-blocking interventions (TBI) is currently unavailable. Here, we explore the use of the well-established Controlled Human Malaria Infection model (CHMI) to induce gametocyte carriage with different antimalarial drug regimens. Methods: In a single centre, open-label randomised tr

    Effects of picornavirus 3A Proteins on Protein Transport and GBF1-dependent COP-I recruitment.

    Get PDF
    Contains fulltext : 35907.pdf (publisher's version ) (Open Access)The 3A protein of the coxsackievirus B3 (CVB3), an enterovirus that belongs to the family of the picornaviruses, inhibits endoplasmic reticulum-to-Golgi transport. Recently, we elucidated the underlying mechanism by showing that CVB3 3A interferes with ADP-ribosylation factor 1 (Arf1)-dependent COP-I recruitment to membranes by binding and inhibiting the function of GBF1, a guanine nucleotide exchange factor that is required for the activation of Arf1 (E. Wessels et al., Dev. Cell 11:191-201, 2006). Here, we show that the 3A protein of poliovirus, another enterovirus, is also able to interfere with COP-I recruitment through the same mechanism. No interference with protein transport or COP-I recruitment was observed for the 3A proteins of any of the other picornaviruses tested here (human rhinovirus [HRV], encephalomyocarditis virus, foot-and-mouth disease virus, and hepatitis A virus). We show that the 3A proteins of HRV, which are the most closely related to the enteroviruses, are unable to inhibit COP-I recruitment, due to a reduced ability to bind GBF1. When the N-terminal residues of the HRV 3A proteins are replaced by those of CVB3 3A, chimeric proteins are produced that have gained the ability to bind GBF1 and, by consequence, to inhibit protein transport. These results show that the N terminus of the CVB3 3A protein is important for binding of GBF1 and its transport-inhibiting function. Taken together, our data demonstrate that the activity of the enterovirus 3A protein to inhibit GBF1-dependent COP-I recruitment is unique among the picornaviruses

    Saffold cardiovirus and multiple sclerosis: no evidence for an association

    Get PDF
    Contains fulltext : 138713.pdf (publisher's version ) (Open Access)Saffold cardiovirus, a newly discovered human cardiovirus, has close similarity with Theiler's murine encephalomyelitis virus (TMEV) which can cause a chronic demyelinating encephalomyelitis in mice. In this study, we tested whether Saffold cardiovirus infection of the brain is associated with multiple sclerosis (MS). Autopsy white matter samples from 19 MS and 9 normal brain donors were tested by polymerase chain reaction. All were negative. Paired cerebrospinal fluid and serum samples from 24 MS patients and 27 controls were tested for Saffold cardiovirus-specific oligoclonal bands, two patients and two controls reacted positive. We conclude that an association between Saffold cardiovirus and MS is highly improbable

    Fitness and virulence of a coxsackievirus mutant that can circumnavigate the need for phosphatidylinositol 4-kinase class III beta.

    Get PDF
    Contains fulltext : 139105.pdf (publisher's version ) (Open Access

    Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection.

    Get PDF
    Contains fulltext : 88377.pdf (publisher's version ) (Open Access)Previous studies have shown that enteroviral RNA can be detected in blood at the onset of type 1 diabetes (T1D). The infection may play a role in triggering T1D and genetic host factors may contribute to this process. We investigated (1) whether enterovirus is present at the onset of T1D in peripheral blood mononuclear cells (PBMC), plasma, throat, or stool, and (2) whether enteroviral presence is linked with HLA-DR type and/or polymorphisms in melanoma differentiation-associated gene 5 (MDA5) and 2'-5' oligoadenylate synthetase 1 (OAS1), factors of antiviral immunity. To this end, PBMC, plasma, throat, and stool samples from 10 T1D patients and 20 unrelated controls were tested for the presence of enteroviruses (RT-PCR), for HLA-DR type, and polymorphisms in MDA5 and OAS1. Enterovirus RNA was detected in PBMC of 4/10 T1D patients, but none of 20 controls. Plasma was positive in 2/10 T1D patients and none of 20 controls, suggesting that enteroviruses found at the onset of T1D are mainly present in PBMC. All throat samples from positive T1D patients were virus-negative and only 1 fecal sample was positive. The negative results for all throat and most stool samples argues against acute infection. Enterovirus presence was linked with HLA-DR4, but not with polymorphisms in MDA5 or OAS1.1 februari 201

    Enterovirus 2Apro targets MDA5 and MAVS in infected cells

    Get PDF
    Contains fulltext : 137931.pdf (publisher's version ) (Open Access)RIG-I-like receptors (RLRs) MDA5 and RIG-I are key players in the innate antiviral response. Upon recognition of viral RNA, they interact with MAVS, eventually inducing type I interferon production. The interferon induction pathway is commonly targeted by viruses. How enteroviruses suppress interferon production is incompletely understood. MDA5 has been suggested to undergo caspase- and proteasome-mediated degradation during poliovirus infection. Additionally, MAVS is reported to be cleaved during infection with coxsackievirus B3 (CVB3) by the CVB3 proteinase 3C(pro), whereas MAVS cleavage by enterovirus 71 has been attributed to 2A(pro). As yet, a detailed examination of the RLR pathway as a whole during any enterovirus infection is lacking. We performed a comprehensive analysis of crucial factors of the RLR pathway, including MDA5, RIG-I, LGP2, MAVS, TBK1, and IRF3, during infection of CVB3, a human enterovirus B (HEV-B) species member. We show that CVB3 inhibits the RLR pathway upstream of TBK1 activation, as demonstrated by limited phosphorylation of TBK1 and a lack of IRF3 phosphorylation. Furthermore, we show that MDA5, MAVS, and RIG-I all undergo proteolytic degradation in CVB3-infected cells through a caspase- and proteasome-independent manner. We convincingly show that MDA5 and MAVS cleavages are both mediated by CVB3 2A(pro), while RIG-I is cleaved by 3C(pro). Moreover, we show that proteinases 2A(pro) and 3C(pro) of poliovirus (HEV-C) and enterovirus 71 (HEV-A) exert the same functions. This study identifies a critical role of 2A(pro) by cleaving MDA5 and MAVS and shows that enteroviruses use a common strategy to counteract the interferon response in infected cells. IMPORTANCE: Human enteroviruses (HEVs) are important pathogens that cause a variety of diseases in humans, including poliomyelitis, hand, foot, and mouth disease, viral meningitis, cardiomyopathy, and more. Like many other viruses, enteroviruses target the host immune pathways to gain replication advantage. The MDA5/MAVS pathway is responsible for recognizing enterovirus infections in the host cell and leads to expression of type I interferons (IFN-I), crucial antiviral signaling molecules. Here we show that three species of HEVs all employ the viral proteinase 2A (2A(pro)) to proteolytically target MDA5 and MAVS, leading to an efficient blockade upstream of IFN-I transcription. These observations suggest that MDA5/MAVS antagonization is an evolutionarily conserved and beneficial mechanism of enteroviruses. Understanding the molecular mechanisms of enterovirus immune evasion strategies will help to develop countermeasures to control infections with these viruses in the future

    The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis.

    No full text
    Contains fulltext : 57459.pdf (Publisher’s version ) (Open Access)Enteroviruses, small cytolytic RNA viruses, confer an antiapoptotic state to infected cells in order to suppress infection-limiting apoptotic host cell responses. This antiapoptotic state also lends protection against cell death induced by metabolic inhibitors like actinomycin D and cycloheximide. The identity of the viral antiapoptotic protein and the underlying mechanism are unknown. Here, we provide evidence that the coxsackievirus 2B protein modulates apoptosis by manipulating intracellular Ca(2+) homeostasis. Using fluorescent Ca(2+) indicators and organelle-targeted aequorins, we demonstrate that ectopic expression of 2B in HeLa cells decreases the Ca(2+) content of both the endoplasmic reticulum and the Golgi, resulting in down-regulation of Ca(2+) signaling between these stores and the mitochondria, and increases the influx of extracellular Ca(2+). In our studies of the physiological importance of the 2B-induced alterations in Ca(2+) signaling, we found that the expression of 2B suppressed caspase activation and apoptotic cell death induced by various stimuli, including actinomycin D and cycloheximide. Mutants of 2B that were defective in reducing the Ca(2+) content of the stores failed to suppress apoptosis. These data implicate a functional role of the perturbation of intracellular Ca(2+) compartmentalization in the enteroviral strategy to suppress intrinsic apoptotic host cell responses. The putative down-regulation of an endoplasmic reticulum-dependent apoptotic pathway is discussed
    corecore