224 research outputs found
On fiber dispersion models: exclusion of compressed fibers and spurious model comparisons
Fiber dispersion in collagenous soft tissues has an important influence on the mechanical response, and the modeling of the collagen fiber architecture and its mechanics has developed significantly over the last few years. The purpose of this paper is twofold, first to develop a method for excluding compressed fibers within a dispersion for the generalized structure tensor (GST) model, which several times in the literature has been claimed not to be possible, and second to draw attention to several erroneous and misleading statements in the literature concerning the relative values of the GST and the angular integration (AI) models. For the GST model we develop a rather simple method involving a deformation dependent dispersion parameter that allows the mechanical influence of compressed fibers within a dispersion to be excluded. The theory is illustrated by application to simple extension and simple shear in order to highlight the effect of exclusion. By means of two examples we also show that the GST and the AI models have equivalent predictive power, contrary to some claims in the literature. We conclude that from the theoretical point of view neither of these two models is superior to the other. However, as is well known and as we now emphasize, the GST model has proved to be very successful in modeling the data from experiments on a wide range of tissues, and it is easier to analyze and simpler to implement than the AI approach, and the related computational effort is much lower
Pretransplant assessment of human liver grafts by plasma lecithin: cholesterol acyltransferase (LCAT) activity in multiple organ donors.
In spite of the improved outcome of orthotopic liver transplantation (OLTx), primary graft nonfunction remains one of the life-threatening problems following OLTx. The purpose of this study was to evaluate plasma lecithin: cholesterol acyltransferase (LCAT) activity in multiple organ donors as a predictor of liver allograft viability prior to OLTx. Thirty-nine donors were studied during a 5-month period between April and August 1988. Allograft hepatectomy was performed using a rapid technique or its minor modification with hilar dissections, and the allografts were stored cold (4 degrees C) in University of Wisconsin (UW) solution. Early post-transplant allograft function was classified as good, fair, or poor, according to the highest SGOT, SGPT, and prothrombin time within 5 days following OLTx. Procurement records were reviewed to identify donor data, which included conventional liver function tests, duration of hospital stay, history of cardiac arrest, and graft ischemic time. Blood samples from the donors were drawn immediately prior to aortic crossclamp, and from these plasma LCAT activity was determined. Plasma LCAT activity of all donors was significantly lower than that of healthy controls (12.4 +/- 8.0 vs 39.2 +/- 13.3 micrograms/ml per hour, P less than 0.01). LCAT activity (16.4 +/- 8.3 micrograms/ml per hour) in donors of grafts with good function was significantly higher than that in those with fair (8.6 +/- 4.5 micrograms/ml per hour, P less than 0.01) or poor (7.3 +/- 2.4 micrograms/ml per hour, P less than 0.01) function.(ABSTRACT TRUNCATED AT 250 WORDS
Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues
State of the art research and treatment of biological tissues require
accurate and efficient methods for describing their mechanical properties.
Indeed, micromechanics motivated approaches provide a systematic method for
elevating relevant data from the microscopic level to the macroscopic one. In
this work the mechanical responses of hyperelastic tissues with one and two
families of collagen fibers are analyzed by application of a new variational
estimate accounting for their histology and the behaviors of their
constituents. The resulting, close form expressions, are used to determine the
overall response of the wall of a healthy human coronary artery. To demonstrate
the accuracy of the proposed method these predictions are compared with
corresponding 3-D finite element simulations of a periodic unit cell of the
tissue with two families of fibers. Throughout, the analytical predictions for
the highly nonlinear and anisotropic tissue are in agreement with the numerical
simulations
Compression Behavior of Single-layer Graphene
Central to most applications involving monolayer graphene is its mechanical
response under various stress states. To date most of the work reported is of
theoretical nature and refers to tension and compression loading of model
graphene. Most of the experimental work is indeed limited to bending of single
flakes in air and the stretching of flakes up to typically ~1% using plastic
substrates. Recently we have shown that by employing a cantilever beam we can
subject single graphene into various degrees of axial compression. Here we
extend this work much further by measuring in detail both stress uptake and
compression buckling strain in single flakes of different geometries. In all
cases the mechanical response is monitored by simultaneous Raman measurements
through the shift of either the G or 2D phonons of graphene. In spite of the
infinitely small thickness of the monolayers, the results show that graphene
embedded in plastic beams exhibit remarkable compression buckling strains. For
large length (l)-to-width (w) ratios (> 0.2) the buckling strain is of the
order of -0.5% to -0.6%. However, for l/w <0.2 no failure is observed for
strains even higher than -1%. Calculations based on classical Euler analysis
show that the buckling strain enhancement provided by the polymer lateral
support is more than six orders of magnitude compared to suspended graphene in
air
A theoretical model of inflammation- and mechanotransduction- driven asthmatic airway remodelling
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and procontractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms
Syncytiotrophoblast Microvesicles Released from Pre-Eclampsia Placentae Exhibit Increased Tissue Factor Activity
Background: Pre-eclampsia is a complication of pregnancy associated with activation of coagulation. It is caused by the placenta, which sheds increased amounts of syncytiotrophoblast microvesicles (STBM) into the maternal circulation. We hypothesized that STBM could contribute to the haemostatic activation observed in pre-eclampsia. Methodology/Principal Findings: STBM were collected by perfusion of the maternal side of placentae from healthy pregnant women and women with pre-eclampsia at caesarean section. Calibrated automated thrombography was used to assess thrombin generation triggered by STBM-borne tissue factor in platelet poor plasma (PPP). No thrombin was detected in PPP alone but the addition of STBM initiated thrombin generation in 14/16 cases. Pre-eclampsia STBM significantly shortened the lag time (LagT, P = 0.01) and time to peak thrombin generation (TTP, P = 0.005) when compared to normal STBM. Blockade of tissue factor eliminated thrombin generation, while inhibition of tissue factor pathway inhibitor significantly shortened LagT (p = 0.01) and TTP (P,0.0001), with a concomitant increase in endogenous thrombin potential. Conclusions/Significance: STBM triggered thrombin generation in normal plasma in a tissue factor dependent manner, indicating that TF activity is expressed by STBM. This is more pronounced in STBM shed from pre-eclampsia placentae. As more STBM are shed in pre-eclampsia these observations give insight into the disordered haemostasis observed in thi
A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue
The mechanical behavior of soft tissue demonstrates a number of complex features including nonlinearity, anisotropy, viscoelasticity, and growth. Characteristic features of the time-dependent and anisotropic behavior are related to the properties of various components of the tissue such as fibrous collagen and elastin networks, large proteins and sugars attached to these networks, and interstitial fluid. Attempts to model the elastic behavior of these tissues based on assumptions about the behavior of the underlying constituents have been reasonably successful, but the essential addition of viscoelasticity to these models has been met with varying success. Here, a new rheological network model is proposed using, as its basis, an orthotropic hyperelastic constitutive model for fibrous tissue and a viscoelastic reptation model for soft materials. The resulting model has been incorporated into numerical and computational models, and is shown to capture the mechanical behavior of soft tissue in various modes of deformation including uniaxial and biaxial tension and simple shear.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47943/1/10237_2004_Article_49.pd
Constitutive modelling of skin ageing
The objective of this chapter is to review the main biomechanical and structural aspects associated with both intrinsic and extrinsic skin ageing, and to present potential research avenues to account for these effects in mathematical and computational models of the skin. This will be illustrated through recent work of the authors which provides a basis to those interested in developing mechanistic constitutive models capturing the mechanobiology of skin across the life course
Structure-strength relations in mammalian tendon.
The stress-strain relations in mammalian tendon are analyzed in terms of the structure and mechanics of its constituents. The model considers the tensile and bending strength of the collagen fibers, the tensile strength of the elastin fibers, and the interaction between the matrix and the collagen fibers. The stress-strain relations are solved through variational considerations by assuming that the fibermaxtrix interactions can be modeled as beam on elastic foundation. The tissue thus modeled is a hyperelastic material. It is further shown that on the basis of the model, the dominant parameters to the tendon's behavior can be evaluated from simple tensile tests
- …