174 research outputs found
Symmetric path integrals for stochastic equations with multiplicative noise
A Langevin equation with multiplicative noise is an equation schematically of
the form dq/dt = - F(q) + e(q) xi, where e(q) xi is Gaussian white noise whose
amplitude e(q) depends on q itself. I show how to convert such equations into
path integrals. The definition of the path integral depends crucially on the
convention used for discretizing time, and I specifically derive the correct
path integral when the convention used is the natural, time-symmetric one that
time derivatives are (q_t - q_{t-\Delta t}) / \Delta t and coordinates are (q_t
+ q_{t-\Delta t}) / 2. [This is the convention that permits standard
manipulations of calculus on the action, like naive integration by parts.] It
has sometimes been assumed in the literature that a Stratanovich Langevin
equation can be quickly converted to a path integral by treating time as
continuous but using the rule \theta(t=0) = 1/2. I show that this prescription
fails when the amplitude e(q) is q-dependent.Comment: 8 page
Path-integral evolution of multivariate systems with moderate noise
A non Monte Carlo path-integral algorithm that is particularly adept at
handling nonlinear Lagrangians is extended to multivariate systems. This
algorithm is particularly accurate for systems with moderate noise.Comment: 15 PostScript pages, including 7 figure
Fluctuation relations and rare realizations of transport observables
Fluctuation relations establish rigorous identities for the nonequilibrium
averages of observables. Starting from a general transport master equation with
time-dependent rates, we employ the stochastic path integral approach to study
statistical fluctuations around such averages. We show how under nonequilibrium
conditions, rare realizations of transport observables are crucial and imply
massive fluctuations that may completely mask such identities. Quantitative
estimates for these fluctuations are provided. We illustrate our results on the
paradigmatic example of a mesoscopic RC circuit.Comment: 4 pages, 3 figures; v2: minor changes, published versio
Dynamic charge density correlation function in weakly charged polyampholyte globules
We study solutions of statistically neutral polyampholyte chains containing a
large fraction of neutral monomers. It is known that, even if the quality of
the solvent with respect to the neutral monomers is good, a long chain will
collapse into a globule. For weakly charged chains, the interior of this
globule is semi-dilute. This paper considers mainly theta-solvents, and we
calculate the dynamic charge density correlation function g(k,t) in the
interior of the globules, using the quadratic approximation to the
Martin-Siggia-Rose generating functional. It is convenient to express the
results in terms of dimensionless space and time variables. Let R be the blob
size, and let T be the characteristic time scale at the blob level. Define the
dimensionless wave vector q = R k, and the dimensionless time s = t/T. We find
that for q<1, corresponding to length scales larger than the blob size, the
charge density fluctuations relax according to g(q,s) = q^2(1-s^(1/2)) at short
times s < 1, and according to g(q,s) = q^2 s^(-1/2) at intermediate times 1 < s
0.1, where
entanglements are unimportant.Comment: 12 pages RevTex, 1 figure ps, PACS 61.25.Hq, reason replacement:
Expression for dynamic corr. function g(k,t) in old version was incorrect
(though expression for Fourier transform g(k,w) was correct, so the major
part of the calculation remains.) Also major textual chang
On the symmetries of BF models and their relation with gravity
The perturbative finiteness of various topological models (e.g. BF models)
has its origin in an extra symmetry of the gauge-fixed action, the so-called
vector supersymmetry. Since an invariance of this type also exists for gravity
and since gravity is closely related to certain BF models, vector supersymmetry
should also be useful for tackling various aspects of quantum gravity. With
this motivation and goal in mind, we first extend vector supersymmetry of BF
models to generic manifolds by incorporating it into the BRST symmetry within
the Batalin-Vilkovisky framework. Thereafter, we address the relationship
between gravity and BF models, in particular for three-dimensional space-time.Comment: 29 page
Relativistic diffusion processes and random walk models
The nonrelativistic standard model for a continuous, one-parameter diffusion
process in position space is the Wiener process. As well-known, the Gaussian
transition probability density function (PDF) of this process is in conflict
with special relativity, as it permits particles to propagate faster than the
speed of light. A frequently considered alternative is provided by the
telegraph equation, whose solutions avoid superluminal propagation speeds but
suffer from singular (non-continuous) diffusion fronts on the light cone, which
are unlikely to exist for massive particles. It is therefore advisable to
explore other alternatives as well. In this paper, a generalized Wiener process
is proposed that is continuous, avoids superluminal propagation, and reduces to
the standard Wiener process in the non-relativistic limit. The corresponding
relativistic diffusion propagator is obtained directly from the nonrelativistic
Wiener propagator, by rewriting the latter in terms of an integral over
actions. The resulting relativistic process is non-Markovian, in accordance
with the known fact that nontrivial continuous, relativistic Markov processes
in position space cannot exist. Hence, the proposed process defines a
consistent relativistic diffusion model for massive particles and provides a
viable alternative to the solutions of the telegraph equation.Comment: v3: final, shortened version to appear in Phys. Rev.
Generalized quark-antiquark potential at weak and strong coupling
We study a two-parameter family of Wilson loop operators in N=4
supersymmetric Yang-Mills theory which interpolates smoothly between the 1/2
BPS line or circle and a pair of antiparallel lines. These observables capture
a natural generalization of the quark-antiquark potential. We calculate these
loops on the gauge theory side to second order in perturbation theory and in a
semiclassical expansion in string theory to one-loop order. The resulting
determinants are given in integral form and can be evaluated numerically for
general values of the parameters or analytically in a systematic expansion
around the 1/2 BPS configuration. We comment about the feasibility of deriving
all-loop results for these Wilson loops.Comment: 43 pages: 15 comprising the main text and 25 for detailed appendice
Brownian Simulations and Uni-Directional Flux in Diffusion
Brownian dynamics simulations require the connection of a small discrete
simulation volume to large baths that are maintained at fixed concentrations
and voltages. The continuum baths are connected to the simulation through
interfaces, located in the baths sufficiently far from the channel. Average
boundary concentrations have to be maintained at their values in the baths by
injecting and removing particles at the interfaces. The particles injected into
the simulation volume represent a unidirectional diffusion flux, while the
outgoing particles represent the unidirectional flux in the opposite direction.
The classical diffusion equation defines net diffusion flux, but not
unidirectional fluxes. The stochastic formulation of classical diffusion in
terms of the Wiener process leads to a Wiener path integral, which can split
the net flux into unidirectional fluxes. These unidirectional fluxes are
infinite, though the net flux is finite and agrees with classical theory. We
find that the infinite unidirectional flux is an artifact caused by replacing
the Langevin dynamics with its Smoluchowski approximation, which is classical
diffusion. The Smoluchowski approximation fails on time scales shorter than the
relaxation time of the Langevin equation. We find the unidirectional
flux (source strength) needed to maintain average boundary concentrations in a
manner consistent with the physics of Brownian particles. This unidirectional
flux is proportional to the concentration and inversely proportional to
to leading order. We develop a BD simulation that maintains
fixed average boundary concentrations in a manner consistent with the actual
physics of the interface and without creating spurious boundary layers
Probability tree algorithm for general diffusion processes
Motivated by path-integral numerical solutions of diffusion processes,
PATHINT, we present a new tree algorithm, PATHTREE, which permits extremely
fast accurate computation of probability distributions of a large class of
general nonlinear diffusion processes
- …