157 research outputs found

    A History of the Eastern Larch Beetle, \u3ci\u3eDendroctonus Simplex\u3c/i\u3e (Coleoptera: Scolytidae), in North America

    Get PDF
    The eastern larch beetle, Dendroctonus simplex, is reputedly a secondary pest but may attack and kill tamarack and ornamental larches throughout Canada, the northeastern United Stales, and Alaska. Isolated infestations of this pest have been reported for over 100 years. The first recorded widespread outbreaks of D. simplex started in eastern Canada and the northeastern United States as well as in Alaska in the mid-1970s. During the outbreak in the Atlantic provinces, in excess of 1.4 million m3 of tamarack was killed. No damage estimates are available for Quebec and the United States. Insect defoliators were the most common factors predisposing tamarack to beetle attack

    Scientific Note: Update on the establishment of birch leafminer parasitoids in western Canada

    Get PDF
    submitted as scientific note, no abstract

    The diversity of terrestrial arthropods in Canada

    Get PDF
    Based on data presented in 29 papers published in the Biota of Canada Special Issue of ZooKeys and data provided herein about Zygentoma, more than 44,100 described species of terrestrial arthropods (Arachnida, Myriapoda, Insecta, Entognatha) are now known from Canada. This represents more than a 34% increase in the number of described species reported 40 years ago (Danks 1979a). The most speciose groups are Diptera (9620 spp.), Hymenoptera (8757), and Coleoptera (8302). Less than 5% of the fauna has a natural Holarctic distribution and an additional 5.1% are non-native species. A conservatively estimated 27,000–42,600 additional species are expected to be eventually discovered in Canada, meaning that the total national species richness is ca. 71,100–86,700 and that currently 51–62% of the fauna is known. Of the most diverse groups, those that are least known, in terms of percent of the Canadian fauna that is documented, are Acari (31%), Thysanoptera (37%), Hymenoptera (46%), and Diptera (32–65%). All groups but Pauropoda have DNA barcodes based on Canadian material. More than 75,600 Barcode Index Numbers have been assigned to Canadian terrestrial arthropods, 63.5% of which are Diptera and Hymenoptera. Much work remains before the Canadian fauna is fully documented, and this will require decades to achieve. In particular, greater and more strategic investment in surveys and taxonomy (including DNA barcoding) is needed to adequately document the fauna

    Moths and Butterflies (Lepidoptera) of the Boreal Mixedwood Forest near Lac La Biche, Alberta, Including New Provincial Records

    Get PDF
    Lepidoptera were collected, primarily via UV light trap, for three seasons in the boreal mixedwood forest near Lac La Biche, Alberta. A total of 11,111 specimens were collected, representing 41 families and 438 species. A species list with flight times is presented. The total Lepidoptera community was estimated to be 546 ± 23.34 species. Abundance and species richness peaked in late July. Thirty-five species constitute new records for Alberta, while one species, Acanthopteroctetes bimaculata, is a new record for Canada, and the first record of the family Acanthopteroctetidae in Canada

    Sawflies (Hymenoptera, Symphyta) Newly Recorded from Washington State

    Get PDF
    Examination of museum specimens, unpublished collection data, and field surveys conducted between 2010 and 2014 resulted in records for 22 species of sawflies new to Washington State, seven of which are likely to be pest problems in ornamental landscapes. These data highlight the continued range expansion of exotic species across North America. These new records also indicate that our collective knowledge of Pacific Northwest arthropod biodiversity and biogeography is underdeveloped, even for a relatively well known and species-poor group of insects. Notable gaps in the knowledge of Washington State’s Symphyta remain for the Olympic Peninsula, the Cascade Mountain Range, and the arid interior of the state. Washington’s shrub-steppe appears to be particularly poorly surveyed for sawflies

    Sawflies (Hymenoptera, Symphyta) Newly Recorded from Washington State

    Get PDF
    Examination of museum specimens, unpublished collection data, and field surveys conducted between 2010 and 2014 resulted in records for 22 species of sawflies new to Washington State, seven of which are likely to be pest problems in ornamental landscapes. These data highlight the continued range expansion of exotic species across North America. These new records also indicate that our collective knowledge of Pacific Northwest arthropod biodiversity and biogeography is underdeveloped, even for a relatively well known and species-poor group of insects. Notable gaps in the knowledge of Washington State’s Symphyta remain for the Olympic Peninsula, the Cascade Mountain Range, and the arid interior of the state. Washington’s shrub-steppe appears to be particularly poorly surveyed for sawflies

    Spatial and Temporal Variation of Epigaeic Beetle Assemblages (Coleoptera, Carabidae, Staphylinidae) in Aspen-Dominated Mixedwood Forests Across North-Central Alberta

    Get PDF
    Epigaeic beetle assemblages were surveyed using continuous pitfall trapping during the summers of 1992 and 1993 in six widely geographically distributed locations in Alberta’s aspen-mixedwood forests prior to initial forest harvest. Species composition and turnover (β-diversity) were evaluated on several spatial scales ranging from Natural Regions (distance between samples 120–420 km) to pitfall traps (40–60 m). A total of 19,885 ground beetles (Carabidae) representing 40 species and 12,669 rove beetles (non-Aleocharinae Staphylinidae) representing 78 species was collected. Beetle catch, species richness, and diversity differed significantly among the six locations, as did the identity of dominant species. Beetle species composition differed significantly between the Boreal Forest and Foothills Natural Regions for both taxa. Staphylinidae β-diversity differed significantly between Natural Regions, whereas Carabidae β-diversity differed among locations. Climate variables such as number of frost-free days, dry periods, and mean summer temperatures were identified as significant factors influencing beetle assemblages at coarse spatial scales, whereas over- and understory vegetation cover, litter depth, shade, slope, and stand age influenced beetle assemblages at finer spatial scales. Significant interannual variation in assemblage structure was noted for both taxa. Because composition of epigaeic beetle assemblages differed across spatial scales, forest management strategies based only on generalized understanding of a single location will be ineffective as conservation measures. In addition, site history and geographic variation significantly affect species distributions of these two beetle families across the landscape. Thus, we underscore Terry Erwin’s suggestion that biodiversity assessments focused on species assemblages at different spatial scales provide a sound approach for understanding biodiversity change and enhancing conservation of arthropod biodiversity
    • …
    corecore