414 research outputs found

    Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis.

    Get PDF
    Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression

    Ontogeny of ependymoglial cells lining the third ventricle in mice.

    Get PDF
    During hypothalamic development, the germinative neuroepithelium gives birth to diverse neural cells that regulate numerous physiological functions in adulthood. Here, we studied the ontogeny of ependymal cells in the mouse mediobasal hypothalamus using the BrdU approach and publicly available single-cell RNAseq datasets. We observed that while typical ependymal cells are mainly produced at E13, tanycyte birth depends on time and subtypes and lasts up to P8. Typical ependymocytes and β tanycytes are the first to arise at the top and bottom of the dorsoventral axis around E13, whereas α tanycytes emerge later in development, generating an outside-in dorsoventral gradient along the third ventricle. Additionally, α tanycyte generation displayed a rostral-to-caudal pattern. Finally, tanycytes mature progressively until they reach transcriptional maturity between P4 and P14. Altogether, this data shows that ependyma generation differs in time and distribution, highlighting the heterogeneity of the third ventricle

    Survival, Reproduction and Calcification of Three Benthic Foraminiferal Species in Response to Experimentally Induced Hypoxia

    Get PDF
    An experiment was conducted to test the survival rates, growth (calcification), and reproduction capacities of three benthic foraminiferal species (Ammonia tepida, Melonis barleeanus and Bulimina marginata) under strongly oxygen-depleted conditions alternating with short periods of anoxia. Protocols were determined to use accurate methods (1) to follow oxygen concentrations in the aquaria (continuously recorded using microsensors), (2) to distinguish live foraminifera (fluorogenic probe), (3) to determine foraminiferal growth (calcein-marked shells and automatic measurement of the shell size). Our results show a very high survival rate, and growth of A. tepida and M. barleeanus in all experimental conditions, suggesting that survival and growth are not negatively impacted by hypoxia. Unfortunately, no reproduction was observed for these species, so that we cannot draw firm conclusions on their ability to reproduce under hypoxic/anoxic conditions. The survival rates of Bulimina marginata are much lower than for the other two species. In the oxic treatments, the presence of juveniles is indicative of reproductive events, which can explain an important part of the mortality. The absence of juveniles in the hypoxic/anoxic treatments could indicate that these conditions inhibit reproduction. Alternatively, the perceived absence of juveniles could also be due to the fact that the juveniles resulting from reproduction (causing similar mortality rates as in the oxic treatments) were not able to calcify, and remained at a propagule stage. Additional experiments are needed to distinguish these two options

    microRNA-205-5p is a modulator of insulin sensitivity that inhibits FOXO function.

    Get PDF
    Hepatic insulin resistance is a hallmark of type 2 diabetes and obesity. Insulin receptor signaling through AKT and FOXO has important metabolic effects that have traditionally been ascribed to regulation of gene expression. However, whether all the metabolic effects of FOXO arise from its regulation of protein-encoding mRNAs is unknown. To address this question, we obtained expression profiles of FOXO-regulated murine hepatic microRNAs (miRNAs) during fasting and refeeding using mice lacking Foxo1, 3a, and 4 in liver (L-Foxo1,3a, 4). Out of 439 miRNA analyzed, 175 were differentially expressed in Foxo knockouts. Their functions were associated with insulin, Wnt, Mapk signaling, and aging. Among them, we report a striking increase of miR-205-5p expression in L-Foxo1,3a,4 knockouts, as well as in obese mice. We show that miR-205-5p gain-of-function increases AKT phosphorylation and decreases SHIP2 in primary hepatocytes, resulting in FOXO inhibition. This results in decreased hepatocyte glucose production. Consistent with these observations, miR-205-5p gain-of-function in mice lowered glucose levels and improved pyruvate tolerance. These findings reveal a homeostatic miRNA loop regulating insulin signaling, with potential implications for in vivo glucose metabolism

    Foraminiferal survival after long-term in situ experimentally induced anoxia

    Get PDF
    Anoxia was successfully induced in four benthic chambers installed at 24 m depth on the northern Adriatic seafloor from 9 days to 10 months. To accurately determine whether benthic foraminifera can survive experimentally induced prolonged anoxia, the CellTrackerTM Green method was applied and calcareous and agglutinated foraminifera were analyzed. Numerous individuals were found living at all sampling times and at all sampling depths (to 5 cm), supported by a ribosomal RNA analysis that revealed that certain benthic foraminifera were active after 10 months of anoxia. The results show that benthic foraminifera can survive up to 10 months of anoxia with co-occurring hydrogen sulfides. However, foraminiferal standing stocks decrease with sampling time in an irregular manner. A large difference in standing stock between two cores sampled under initial conditions indicates the presence of a large spatial heterogeneity of the foraminiferal faunas. An unexpected increase in standing stocks after one month is tentatively interpreted as a reaction to increased food availability due to the massive mortality of infaunal macrofaunal organisms. After this, standing stocks decrease again in cores sampled after 2 months of anoxia to then attain a minimum in the cores sampled after 10 months. We speculate that the trend of overall decrease of standing stocks is not due to the adverse effects of anoxia and hydrogen sulfides but rather due to a continuous diminution of labile organic matter

    Dynamic Interferometry Lithography on a TiO 2

    Get PDF
    International audienceSolar electricity is one of the most promising renewable energy resources. However, the ratio module's cost/energy produced remains a major issue for classical photovoltaic energy. Many technologies have been developed to solve this problem, by using micro-or nanostructuring on the solar cell or on the module. These kinds of structuring are often used as antireflection and light-trapping tools. In the meantime, other solar technologies are considered, such as concentration photovoltaic modules. This article presents a module combining both approaches, that is, nanostructures and concentration, in order to increase the module's profitability. Sol-gel derived TiO 2 diffraction gratings, made by dynamic interferometric lithography, are added on the top of the glass cover to deflect unused light onto the solar cell, increasing the module efficiency

    Foraminiferal species responses to in situ, experimentally induced anoxia in the Adriatic Sea

    Get PDF
    Anoxia was successfully induced in four benthic chambers installed at 24 m depth in the northern Adriatic Sea for periods varying from 9 days to 10 months. During the 10-month period, species richness significantly decreased. Although no significant change in Shannon diversity and evenness was observed, the composition of the foraminiferal assemblages changed with time. This change is due to interspecific differences in tolerance to anoxia. Reophax nanus, Textularia agglutinans and Quinqueloculina stelligera all showed a significant decrease with time, strongly suggesting they are sensitive to anoxia. Conversely, Eggerella scabra, Bulimina marginata, Lagenammina atlantica, Hopkinsina pacifica and Bolivina pseudoplicata appeared to be resistant to the experimental conditions. Quinqueloculina seminula was apparently sensitive to anoxia but showed a clear standing stock increase during the first month of the experiment, which we interpret as an opportunistic response to increasing organic matter availability due to the degradation of the dead macrofaunal organisms. None of the anoxia-sensitive species is able to accumulate intracellular nitrates. Nitrate accumulation could be shown for some tested specimens of the dominant anoxia-tolerant species E. scabra and B. marginata. However, tests on the denitrification capacity of these taxa yielded negative results, suggesting that their resistance to long-term anoxia is not due to their ability to denitrify

    Design and tests of high sensitivity NTD Ge thermometers for the Planck-High Frequency Instrument

    Get PDF
    The High Frequency Instrument of Planck needs high sensitivity semi-conductors at low temperature to monitor the temperature of the bolometer plate. We have modeled such thermometers by using a semi-analytical approach of Anderson insulators, taking into account both the electrical field and the electron/phonon decoupling effects. The optimized design uses convenient NTD Ge material and has larger dimension than the initial design. The first measurements of these optimized thermometers showed a significant thermal de-coupling effect due to Kapitza resistance with its mechanical support. Nevertheless, a sensitivity of about 8 nK.Hz^(–0.5), not far from the predicted one, was obtained. The noise spectrum of the thermometer was flat down to 1 Hz, dominated at lower frequency by the thermal fluctuations
    corecore