1,212 research outputs found

    Characterization of a 5-eV neutral atomic oxygen beam facility

    Get PDF
    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm

    Fluctuations and Dissipation of Coherent Magnetization

    Full text link
    A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic moment, including fluctuations and dissipation. The model reproduces the Gilbert-Brown form of the equation in the classical limit. The magnetic moment is linearly coupled to a reservoir of bosonic degrees of freedom. Use of generalized coherent states makes the semiclassical limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived. The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how the approximate stochastic description of the thermal field follows from our result. As an example, we go beyond the linear-response method and show how the thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page

    A Spectroscopic Orbit for Regulus

    Full text link
    We present a radial velocity study of the rapidly rotating B-star Regulus that indicates the star is a single-lined spectroscopic binary. The orbital period (40.11 d) and probable semimajor axis (0.35 AU) are large enough that the system is not interacting at present. However, the mass function suggests that the secondary has a low mass (M_2 > 0.30 M_sun), and we argue that the companion may be a white dwarf. Such a star would be the remnant of a former mass donor that was the source of the large spin angular momentum of Regulus itself.Comment: 18 pages, 2 figures, ApJL in pres

    Quantum Nucleation in a Ferromagnetic Film Placed in a Magnetic Field at an Arbitrary Angle

    Full text link
    We study the quantum nucleation in a thin ferromagnetic film placed in a magnetic field at an arbitrary angle. The dependence of the quantum nucleation and the temperature of the crossover from thermal to quantum regime on the direction and the strength of the applied field are presented. It is found that the maximal value of the rate and that of the crossover temperature are obtained at a some angle with the magnetic field, not in the direction of the applied field opposite to the initial easy axis.Comment: 15 pages, RevTex, 3 PostScript figures. To appear in Phys. Rev.

    Persistent spins in the linear diffusion approximation of phase ordering and zeros of stationary gaussian processes

    Full text link
    The fraction r(t) of spins which have never flipped up to time t is studied within a linear diffusion approximation to phase ordering. Numerical simulations show that, even in this simple context, r(t) decays with time like a power-law with a non-trival exponent θ\theta which depends on the space dimension. The local dynamics at a given point is a special case of a stationary gaussian process of known correlation function and the exponent θ\theta is shown to be determined by the asymptotic behavior of the probability distribution of intervals between consecutive zero-crossings of this process. An approximate way of computing this distribution is proposed, by taking the lengths of the intervals between successive zero-crossings as independent random variables. The approximation gives values of the exponent θ\theta in close agreement with the results of simulations.Comment: 10 pages, 2 postscript files. Submitted to PRL. Reference screwup correcte

    Periodic Bounce for Nucleation Rate at Finite Temperature in Minisuperspace Models

    Get PDF
    The periodic bounce configurations responsible for quantum tunneling are obtained explicitly and are extended to the finite energy case for minisuperspace models of the Universe. As a common feature of the tunneling models at finite energy considered here we observe that the period of the bounce increases with energy monotonically. The periodic bounces do not have bifurcations and make no contribution to the nucleation rate except the one with zero energy. The sharp first order phase transition from quantum tunneling to thermal activation is verified with the general criterions.Comment: 17 pages, 5 postscript figures include

    Decoupling of Massive Right-handed Neutrinos

    Get PDF
    We investigate the effect of B+L - violating anomalous generation of massive right-handed neutrinos on their decoupling, when the right-handed neutrino mass is considerably greater than the right-handed gauge boson masses. Considering normal annihilation channels, the Lee-Weinberg type of calculation, in this case, gives an upper bound of about 700 Gev, which casts doubt on the existence of such a right-handed neutrino mass greater than right-handed gauge boson masses. We examine the possibility that a consideration of anomalous effects related to the SU(2)_R gauge group may turn this into a lower bound of the order of 100 Tev.Comment: 28 Pages, Latex, 2 figure

    The chemical evolution of the solar neighbourhood

    Get PDF
    Recent models of galactic chemical evolution account for updated evolutionary models of massive stars (with special emphasis on stellar winds) and for the effects of intermediate mass and massive binaries. The results are summarised. We also present a critical discussion on possible effects of stellar rotation on overall galactic chemical evolutionary simulations.Comment: 12 pages, 3 figures, Pacific Rim Conference, Xi'an, China, 11-17 July 200

    Subcritical Fluctuations at the Electroweak Phase Transition

    Get PDF
    We study the importance of thermal fluctuations during the electroweak phase transition. We evaluate in detail the equilibrium number density of large amplitude subcritical fluctuations and discuss the importance of phase mixing to the dynamics of the phase transition. Our results show that, for realistic Higgs masses, the phase transition can be completed by the percolation of the true vacuum, induced by the presence of subcritical fluctuations.Comment: RevTeX, 4 eps figs (uses epsf.sty), 26 pages, to be published in Phys. Rev.

    Weak reaction freeze-out constraints on primordial magnetic fields

    Get PDF
    We explore constraints on the strength of the primordial magnetic field based upon the weak reaction freeze-out in the early universe. We find that limits on the strength of the magnetic field found in other works are recovered simply by examining the temperature at which the rate of weak reactions drops below the rate of universal expansion (Γw≤\Gamma_{w} \le H). The temperature for which the n/pn/p ratio at freeze-out leads to acceptable helium production implies limits on the magnetic field. This simplifies the application of magnetic fields to other cosmological variants of the standard big-bang. As an illustration we also consider effects of neutrino degeneracy on the allowed limits to the primordial magnetic field.Comment: Submitted to Phys. Rev. D., 6 pages, 2 figure
    • …
    corecore