818 research outputs found
Normalizing flows as an avenue to study overlapping gravitational wave signals
Due to its speed after training, machine learning is often envisaged as a
solution to a manifold of the issues faced in gravitational-wave astronomy.
Demonstrations have been given for various applications in gravitational-wave
data analysis. In this work, we focus on a challenging problem faced by
third-generation detectors: parameter inference for overlapping signals. Due to
the high detection rate and increased duration of the signals, they will start
to overlap, possibly making traditional parameter inference techniques
difficult to use. Here, we show a proof-of-concept application of normalizing
flows to perform parameter estimation on overlapped binary black hole systems.Comment: 7 pages, 6 figure
Bone drilling with fiber guided excimer laser beam
Zur Ermittlung einer optimalen Parametereinstellung des Excimerlasers für die Bearbeitung von Knochengewebe, testeten wir bei drei unterschiedlichen Impulslängen den Einfluß von Austrittsenergie und Repetitionsrate auf die Ablationstiefe.An experiment is presented which shows the relationship between energy, repetition rate and pulse width to the bone ablation rate using a fiber guided excimer laser beam
Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications
One of the major drawbacks found in most bone tissue engineering approaches developed so far consists in the
lack of strategies to promote vascularisation. Some studies have addressed different issues that may enhance
vascularisation in tissue engineered constructs, most of them involving the use of growth factors (GFs) that are
involved in the restitution of the vascularity in a damaged zone. The use of sustained delivery systems might also
play an important role in the re-establishment of angiogenesis. In this study, !-carrageenan, a naturally occurring
polymer, was used to develop hydrogel beads with the ability to incorporate GFs with the purpose of establishing
an effective angiogenesis mechanism. Some processing parameters were studied and their influence on the final
bead properties was evaluated. Platelet derived growth factor (PDGF-BB) was selected as the angiogenic factor
to incorporate in the developed beads, and the results demonstrate the achievement of an efficient encapsulation
and controlled release profile matching those usually required for the development of a fully functional vascular
network. In general, the obtained results demonstrate the potential of these systems for bone tissue engineering
applications.This work was supported by the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the European STREP HIPPOCRATES (NMP3-CT-2003-505758), and by the Portuguese Foundation for Science and Technology (FCT) through the project PTDC/FIS/68517/2006 and through the V. Espirito Santo's Ph.D. grant (SFRH/BD/39486/2007)
Antiarrhythmic and antioxidant activity of novel pyrrolidin-2-one derivatives with adrenolytic properties
A series of novel pyrrolidin-2-one derivatives (17 compounds) with adrenolytic properties was evaluated for antiarrhythmic, electrocardiographic and antioxidant activity. Some of them displayed antiarrhythmic activity in barium chloride-induced arrhythmia and in the rat coronary artery ligation-reperfusion model, and slightly decreased the heart rate, prolonged P–Q, Q–T intervals and QRS complex. Among them, compound EP-40 (1-[2-hydroxy-3-[4-[(2-hydroxyphenyl)piperazin-1-yl]propyl]pyrrolidin-2-one showed excellent antiarrhythmic activity. This compound had significantly antioxidant effect, too. The present results suggest that the antiarrhythmic effect of compound EP-40 is related to their adrenolytic and antioxidant properties. A biological activity prediction using the PASS software shows that compound EP-35 and EP-40 can be characterized by antiischemic activity; whereas, compound EP-68, EP-70, EP-71 could be good tachycardia agents
Possible involvement of caveolin in attenuation of cardioprotective effect of ischemic preconditioning in diabetic rat heart
<p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) has been noted to produce ischemic preconditioning (IPC)-mediated cardioprotection. Caveolin is a negative regulator of NO, which inhibits endothelial nitric oxide synthase (eNOS) by making caveolin-eNOS complex. The expression of caveolin is increased during diabetes mellitus (DM). The present study was designed to investigate the involvement of caveolin in attenuation of the cardioprotective effect of IPC during DM in rat.</p> <p>Methods</p> <p>Experimental DM was induced by single dose of streptozotocin (50 mg/Kg, <it>i.p</it>,) and animals were used for experiments four weeks later. Isolated heart was mounted on Langendorff's apparatus, and was subjected to 30 min of global ischemia and 120 min of reperfusion. IPC was given by four cycles of 5 min of ischemia and 5 min of reperfusion with Kreb's-Henseleit solution (K-H). Extent of injury was measured in terms of infarct size by triphenyltetrazolium chloride (TTC) staining, and release of lactate dehydrogenase (LDH) and creatin kinase-MB (CK-MB) in coronary effluent. The cardiac release of NO was noted by measuring the level of nitrite in coronary effluent.</p> <p>Results</p> <p>IPC- induced cardioprotection and release of NO was significantly decreased in diabetic rat heart. Pre-treatment of diabetic rat with daidzein (DDZ) a caveolin inhibitor (0.2 mg/Kg/s.c), for one week, significantly increased the release of NO and restored the attenuated cardioprotective effect of IPC. Also perfusion of sodium nitrite (10 μM/L), a precursor of NO, significantly restored the lost effect of IPC, similar to daidzein in diabetic rat. Administration of 5-hydroxy deaconate (5-HD), a mito K<sub>ATP </sub>channel blocker, significantly abolished the observed IPC-induced cardioprotection in normal rat or daidzein and sodium nitrite perfused diabetic rat heart alone or in combination.</p> <p>Conclusions</p> <p>Thus, it is suggested that attenuation of the cardioprotection in diabetic heart may be due to decrease the IPC mediated release of NO in the diabetic myocardium, which may be due to up -regulation of caveolin and subsequently decreased activity of eNOS.</p
- …