338 research outputs found

    Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial.

    Get PDF
    Apolipoprotein L1 gene (APOL1) G1 and G2 coding variants are strongly associated with chronic kidney disease (CKD) in African Americans (AAs). Here APOL1 association was tested with baseline estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (UACR), and prevalent cardiovascular disease (CVD) in 2571 AAs from the Systolic Blood Pressure Intervention Trial (SPRINT), a trial assessing effects of systolic blood pressure reduction on renal and CVD outcomes. Logistic regression models that adjusted for potentially important confounders tested for association between APOL1 risk variants and baseline clinical CVD (myocardial infarction, coronary, or carotid artery revascularization) and CKD (eGFR under 60 ml/min per 1.73 m(2) and/or UACR over 30 mg/g). AA SPRINT participants were 45.3% female with a mean (median) age of 64.3 (63) years, mean arterial pressure 100.7 (100) mm Hg, eGFR 76.3 (77.1) ml/min per 1.73 m(2), and UACR 49.9 (9.2) mg/g, and 8.2% had clinical CVD. APOL1 (recessive inheritance) was positively associated with CKD (odds ratio 1.37, 95% confidence interval 1.08-1.73) and log UACR estimated slope (β) 0.33) and negatively associated with eGFR (β -3.58), all significant. APOL1 risk variants were not significantly associated with prevalent CVD (1.02, 0.82-1.27). Thus, SPRINT data show that APOL1 risk variants are associated with mild CKD but not with prevalent CVD in AAs with a UACR under 1000 mg/g

    The nuclear structural protein NuMA is a negative regulator of 53BP1 in DNA double-strand break repair

    Get PDF
    P53-binding protein 1 (53BP1) mediates DNA repair pathway choice and promotes checkpoint activation. Chromatin marks induced by DNA double-strand breaks and recognized by 53BP1 enable focal accumulation of this multifunctional repair factor at damaged chromatin. Here, we unveil an additional level of regulation of 53BP1 outside repair foci. 53BP1 movements are constrained throughout the nucleoplasm and increase in response to DNA damage. 53BP1 interacts with the structural protein NuMA, which controls 53BP1 diffusion. This interaction, and colocalization between the two proteins in vitro and in breast tissues, is reduced after DNA damage. In cell lines and breast carcinoma NuMA prevents 53BP1 accumulation at DNA breaks, and high NuMA expression predicts better patient outcomes. Manipulating NuMA expression alters PARP inhibitor sensitivity of BRCA1-null cells, end-joining activity, and immunoglobulin class switching that rely on 53BP1. We propose a mechanism involving the sequestration of 53BP1 by NuMA in the absence of DNA damage. Such a mechanism may have evolved to disable repair functions and may be a decisive factor for tumor responses to genotoxic treatments

    Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes

    Get PDF
    Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. Recent studies have greatly expanded the number of established SLE risk alleles, but the distribution of multiple risk alleles in cases versus controls and their relationship to subphenotypes have not been studied. We studied 22 SLE susceptibility polymorphisms with previous genome-wide evidence of association (p<5×10−8) in 1919 SLE cases from 9 independent Caucasian SLE case series and 4813 independent controls. The mean number of risk alleles in cases was 15.1 (SD 3.1) while the mean in controls was 13.1 (SD 2.8), with trend p = 4×10−128. We defined a genetic risk score (GRS) for SLE as the number of risk alleles with each weighted by the SLE risk odds ratio (OR). The OR for high-low GRS tertiles, adjusted for intra-European ancestry, sex, and parent study, was 4.4 (95% CI 3.8–5.1). We studied associations of individual SNPs and the GRS with clinical manifestations for the cases: age at diagnosis, the 11 American College of Rheumatology classification criteria, and double-stranded DNA antibody (anti-dsDNA) production. Six subphenotypes were significantly associated with the GRS, most notably anti-dsDNA (ORhigh-low = 2.36, p = 9e−9), the immunologic criterion (ORhigh-low = 2.23, p = 3e−7), and age at diagnosis (ORhigh-low = 1.45, p = 0.0060). Finally, we developed a subphenotype-specific GRS (sub-GRS) for each phenotype with more power to detect cumulative genetic associations. The sub-GRS was more strongly associated than any single SNP effect for 5 subphenotypes (the above plus hematologic disorder and oral ulcers), while single loci are more significantly associated with renal disease (HLA-DRB1, OR = 1.37, 95% CI 1.14–1.64) and arthritis (ITGAM, OR = 0.72, 95% CI 0.59–0.88). We did not observe significant associations for other subphenotypes, for individual loci or the sub-GRS. Thus our analysis categorizes SLE subphenotypes into three groups: those having cumulative, single, and no known genetic association with respect to the currently established SLE risk loci

    PRIORITIZATION OF RESULTS FROM WHOLE EXOME SEQUENCING IN FAMILIAL INTRACRANIAL ANEURYSM

    Get PDF
    poster abstractWhole exome sequencing (WES) is an innovative approach to identifying rare variants associated with disease; however, reducing the large number of variants to a useful set of candidate genes is challenging. We developed a ranking system utilizing data from a previous genome-wide linkage analysis and various bioinformatics databases to prioritize the results of WES from families having multiple members with intracranial aneurysms. WES was performed in 35 affected individuals and 10 unaffected individ-uals across 7 families. All samples were genotyped (Illumina® OmniExpress) and sequenced (Agilent© SureSelect™ 50Mb Human All Exon Kit). Linkage analysis (Illumina 6K) was previously performed using autosomal domi-nant/recessive modes of inheritance. Application of quality filters resulted in 91,659 single nucleotide variants (SNVs). Nonsynonymous SNVs within an exon having an allele frequency of <3% were retained. Further filtering was performed based on Mendelian in-heritance (autosomal dominant or recessive). A ranking system prioritized retained variants based on the inheritance pattern specific to each family, occurrence in multiple families, relation to pathways and genes of interest, degree of penetrance, presence within a linkage peak, and whether the re-sultant proteins were predicted to be deleterious. Out of a 9-point score, 292 variants in 190 genes received scores of at least 5. Of these, 14 variants in 10 genes met the majority of prioritization criteria by achieving scores of over 7. While several WES studies have been successful at identifying genes im-portant to rare diseases, few have examined how to produce a list of candi-date genes contributing to a complex disease from WES data. We show that a ranking system that combines WES with bioinformatics resources and link-age data is a powerful approach to prioritize candidate genes for a complex disease like familial intracranial aneurysms. Subsequent studies are required to validate the utility of this approach

    Rare missense functional variants at COL4A1 and COL4A2 in sporadic intracerebral Hhmorrhage

    Get PDF
    Objective: To test the genetic contribution of rare missense variants in COL4A1 and COL4A2 in which common variants are genetically associated with sporadic intracerebral hemorrhage (ICH), we performed rare variant analysis in multiple sequencing data for the risk for sporadic ICH. Methods: We performed sequencing across 559Kbp at 13q34 including COL4A1 and COL4A2 among 2,133 individuals (1,055 ICH cases; 1,078 controls) in US-based and 1,492 individuals (192 ICH cases; 1,189 controls) from Scotland-based cohorts, followed by sequence annotation, functional impact prediction, genetic association testing, and in silico thermodynamic modeling. Results: We identified 107 rare nonsynonymous variants in sporadic ICH, of which two missense variants, rs138269346 (COL4A1I110T) and rs201716258 (COL4A2H203L), were predicted to be highly functional and occurred in multiple ICH cases but not in controls from the US-based cohort. The minor allele of rs201716258 was also present in Scottish ICH patients, and rs138269346 was observed in two ICH-free controls with a history of hypertension and myocardial infarction. Rs138269346 was nominally associated with non-lobar ICH risk (P=0.05), but not with lobar ICH (P=0.08), while associations between rs201716258 and ICH subtypes were non-significant (P&gt;0.12). Both variants were considered pathogenic based on minor allele frequency (&lt;0.00035 in EUR), predicted functional impact (deleterious or probably damaging), and in silico modeling studies (substantially altered physical length and thermal stability of collagen). Conclusions: We identified rare missense variants in COL4A1/A2 in association with sporadic ICH. Our annotation and simulation studies suggest that these variants are highly functional and may represent targets for translational follow-up
    • …
    corecore