16 research outputs found

    Selectins mediate macrophage infiltration in obstructive nephropathy in newborn mice11See Editorial by Kipari and Hughes, p. 760.

    Get PDF
    Selectins mediate macrophage infiltration in obstructive nephropathy in newborn mice.BackgroundUrinary tract obstruction during development leads to tubular atrophy and causes interstitial fibrosis. Macrophage infiltration into the interstitium plays a central role in this process. Selectins, a family of three adhesion molecules, are involved in leukocyte recruitment to sites of inflammation and immune activity. We investigated the role of selectins in obstructive nephropathy in newborn mice.MethodsTriple selectin-deficient mice (EPL-/-), L-selectin deficient mice (L-/-) and wild type mice (WT) were subjected to complete unilateral ureteral obstruction (UUO) or sham operation within the first 48 hours of life, and were sacrificed 5 and 12 days later. Kidneys were removed, and sections were stained for macrophage infiltration (mAb F4/80), apoptosis (TUNEL), tubular atrophy (periodic acid-Schiff) and interstitial fibrosis (Masson trichrome).ResultsSelectin deficient mice showed a marked reduction in macrophage infiltration into the obstructed kidney compared to WT at day 5 and day 12 after UUO. Tubular apoptosis was strongly reduced in EPL-/- at day 5 after UUO, and in EPL-/- and L-/- at day 12 after UUO when compared to WT. The number of apoptotic tubular cells was correlated with macrophage infiltration, suggesting that macrophages stimulate tubular apoptosis in obstructive nephropathy. In addition, tubular atrophy and interstitial fibrosis were significantly diminished in EPL-/- and L-/- compared to WT at day 12 after UUO.ConclusionFollowing UUO, selectins mediate macrophage infiltration into the obstructed kidney, which in turn may induce tubular apoptosis, tubular atrophy and interstitial fibrosis

    Renal developmental genes are differentially regulated after unilateral ureteral obstruction in neonatal and adult mice

    Get PDF
    Congenital obstructive nephropathy hinders normal kidney development. The severity and the duration of obstruction determine the compensatory growth of the contralateral, intact opposite kidney. We investigated the regulation of renal developmental genes, that are relevant in congenital anomalies of the kidney and urinary tract (CAKUT) in obstructed and contralateral (intact opposite) kidneys after unilateral ureteral obstruction (UUO) in neonatal and adult mice. Newborn and adult mice were subjected to complete UUO or sham-operation, and were sacrificed 1, 5, 12 and 19 days later. Quantitative RT-PCR was performed in obstructed, intact opposite kidneys and sham controls for Gdnf, Pax2, Six4, Six2, Dach1, Eya1, Bmp4, and Hnf-1 beta. Neonatal UUO induced an early and strong upregulation of all genes. In contrast, adult UUO kidneys showed a delayed and less pronounced upregulation. Intact opposite kidneys of neonatal mice revealed a strong upregulation of all developmental genes, whereas intact opposite kidneys of adult mice demonstrated only a weak response. Only neonatal mice exhibited an increase in BMP4 protein expression whereas adult kidneys strongly upregulated phosphatidylinositol 3 kinase class III, essential for compensatory hypertrophy. In conclusion, gene regulation differs in neonatal and adult mice with UUO. Repair and compensatory hypertrophy involve different genetic programs in developing and adult obstructed kidneys

    Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation

    Get PDF
    Recent in vitro studies have suggested a role for sialylation in chemokine receptor binding to its ligand (Bannert, N., S. Craig, M. Farzan, D. Sogah, N.V. Santo, H. Choe, and J. Sodroski. 2001. J. Exp. Med. 194:1661–1673). This prompted us to investigate chemokine-induced leukocyte adhesion in inflamed cremaster muscle venules of α2,3 sialyltransferase (ST3Gal-IV)-deficient mice. We found a marked reduction in leukocyte adhesion to inflamed microvessels upon injection of the CXCR2 ligands CXCL1 (keratinocyte-derived chemokine) or CXCL8 (interleukin 8). In addition, extravasation of ST3Gal-IV−/− neutrophils into thioglycollate-pretreated peritoneal cavities was significantly decreased. In vitro assays revealed that CXCL8 binding to isolated ST3Gal-IV−/− neutrophils was markedly impaired. Furthermore, CXCL1-mediated adhesion of ST3Gal-IV−/− leukocytes at physiological flow conditions, as well as transendothelial migration of ST3Gal-IV−/− leukocytes in response to CXCL1, was significantly reduced. In human neutrophils, enzymatic desialylation decreased binding of CXCR2 ligands to the neutrophil surface and diminished neutrophil degranulation in response to these chemokines. In addition, binding of α2,3-linked sialic acid–specific Maackia amurensis lectin II to purified CXCR2 from neuraminidase-treated CXCR2-transfected HEK293 cells was markedly impaired. Collectively, we provide substantial evidence that sialylation by ST3Gal-IV significantly contributes to CXCR2-mediated leukocyte adhesion during inflammation in vivo

    Tyrphostin AG490 reduces inflammation and fibrosis in neonatal obstructive nephropathy.

    Get PDF
    BackgroundCongenital obstructive nephropathy is the main cause of end-stage renal disease in infants and children. Renal insufficiency is due to impaired growth and maturation in the developing kidney with obstruction. Congenital obstructive nephropathy leads to cytokine mediated inflammation and the development of interstitial fibrosis. The Janus kinase-2 (JAK-2) and Signal Transducer and Activator of Transcription'-3 (STAT3) are involved in cytokine production, inflammation, and interstitial fibrosis.MethodsWe studied the role of JAK2/STAT3 in a model of congenital obstructive nephropathy using unilateral ureteral obstruction (UUO) in neonatal mice at the second day of life. Cytokine production, inflammation, and interstitial fibrosis were analyzed in obstructed and sham operated kidneys of neonatal mice treated with or without JAK2/STAT3 inhibitor Tyrphostin AG490. To mimic obstruction and distension, proximal tubular cells were stretched in vitro.ResultsWe show that STAT3 is highly activated in the developing kidney with obstruction and in proximal tubular cells following stretch. JAK2/STAT3 activation mediates cytokine release and leukocyte recruitment into neonatal kidneys after UUO. Pharmacological blockade of JAK2/STAT3 by Tyrphostin AG490 reduced inflammation, tubular apoptosis, and interstitial fibrosis. JAK2/STAT3 blockade decreased pro-inflammatory and profibrotic mediators in tubular cells.ConclusionOur findings provide evidence that JAK2/STAT3 mediates inflammation and fibrosis in the developing kidney with obstruction. Blocking JAK2/STAT3 may prove beneficial in congenital obstructive nephropathy in children

    Different approaches to long-term treatment of aHUS due to MCP mutations: a multicenter analysis

    No full text
    Background!#!Atypical hemolytic uremic syndrome (aHUS) is a rare, life-threatening microangiopathy, frequently causing kidney failure. Inhibition of the terminal complement complex with eculizumab is the only licensed treatment but mostly requires long-term administration and risks severe side effects. The underlying genetic cause of aHUS is thought to influence the severity of initial and recurring episodes, with milder courses in patients with mutations in membrane cofactor protein (MCP).!##!Methods!#!Twenty pediatric cases of aHUS due to isolated heterozygous MCP mutations were reported from 12 German pediatric nephrology centers to describe initial presentation, timing of relapses, treatment, and kidney outcome.!##!Results!#!The median age of onset was 4.6 years, with a female to male ratio of 1:3. Without eculizumab maintenance therapy, 50% (9/18) of the patients experienced a first relapse after a median period of 3.8 years. Kaplan-Meier analysis showed a relapse-free survival of 93% at 1 year. Four patients received eculizumab long-term treatment, while 3 patients received short courses. We could not show a benefit from complement blockade therapy on long term kidney function, independent of short-term or long-term treatment. To prevent 1 relapse with eculizumab, the theoretical number-needed-to-treat (NNT) was 15 for the first year and 3 for the first 5 years after initial presentation.!##!Conclusion!#!Our study shows that heterozygous MCP mutations cause aHUS with a risk of first relapse of about 10% per year, resulting in large NNTs for prevention of relapses with eculizumab. More studies are needed to define an optimal treatment schedule for patients with MCP mutations to minimize the risks of the disease and treatment

    Leukocytes Induce Epithelial to Mesenchymal Transition after Unilateral Ureteral Obstruction in Neonatal Mice

    No full text
    Urinary tract obstruction during renal development leads to tubular apoptosis, tubular atrophy, and interstitial fibrosis. Epithelial to mesenchymal transition (EMT) has been proposed as a key mechanism of myofibroblast accumulation in renal fibrosis. We studied the interplay of leukocyte infiltration, tubular apoptosis, and EMT in renal fibrosis induced by unilateral ureteral obstruction (UUO) in neonatal mice. We show that leukocytes mediate tubular apoptosis and EMT in the developing kidney with obstructive nephropathy. Blocking leukocyte recruitment by using the chemokine receptor-1 antagonist BX471 protected against tubular apoptosis and interstitial fibrosis, as evidenced by reduced monocyte influx, a decrease in EMT, and attenuated collagen deposition. EMT was rapidly induced within 24 hours after UUO along with up-regulation of the transcription factors Snail1 and Snail2/Slug, preceding the induction of α-smooth muscle actin and vimentin. In the presence of BX471, the expression of chemokines, as well as of Snail1 and Snail2/Slug, in the obstructed kidney was completely attenuated. This was associated with reduced macrophage and T-cell infiltration, tubular apoptosis, and interstitial fibrosis in the developing kidney. Our findings provide evidence that leukocytes induce EMT and renal fibrosis after UUO and suggest that chemokine receptor-1 antagonism may prove beneficial in obstructive nephropathy

    Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid–Resistant Nephrotic Syndrome

    No full text
    BACKGROUND AND OBJECTIVES: Treatment of congenital nephrotic syndrome (CNS) and steroid–resistant nephrotic syndrome (SRNS) is demanding, and renal prognosis is poor. Numerous causative gene mutations have been identified in SRNS that affect the renal podocyte. In the era of high–throughput sequencing techniques, patients with nongenetic SRNS frequently escape the scientific interest. We here present the long-term data of the German CNS/SRNS Follow-Up Study, focusing on the response to cyclosporin A (CsA) in patients with nongenetic versus genetic disease. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Cross–sectional and longitudinal clinical data were collected from 231 patients with CNS/SRNS treated at eight university pediatric nephrology units with a median observation time of 113 months (interquartile range, 50–178). Genotyping was performed systematically in all patients. RESULTS: The overall mutation detection rate was high at 57% (97% in CNS and 41% in SRNS); 85% of all mutations were identified by the analysis of three single genes only (NPHS1, NPHS2, and WT1), accounting for 92% of all mutations in patients with CNS and 79% of all mutations in patients with SRNS. Remission of the disease in nongenetic SRNS was observed in 78% of patients after a median treatment period of 2.5 months; 82% of nongenetic patients responded within 6 months of therapy, and 98% of patients with nongenetic SRNS and CsA–induced complete remission (normalbuminemia and no proteinuria) maintained a normal renal function. Genetic SRNS, on the contrary, is associated with a high rate of ESRD in 66% of patients. Only 3% of patients with genetic SRNS experienced a complete remission and 16% of patients with genetic SRNS experienced a partial remission after CsA therapy. CONCLUSIONS: The efficacy of CsA is high in nonhereditary SRNS, with an excellent prognosis of renal function in the large majority of patients. CsA should be given for a minimum period of 6 months in these patients with nongenetic SRNS. In genetic SRNS, response to CsA was low and restricted to exceptional patients

    Giemsa-stained whole-mounts of TNF-α–treated cremaster muscles of WT, ST3Gal-IV, and CXCR2 mice were analyzed for the number of intravascular (A) and perivascular (B) leukocytes (mean ± SEM per mm surface area)

    No full text
    In addition, two typical micrographs are presented illustrating intra- and perivascular leukocyte distribution in TNF-α–treated cremaster muscle whole mounts of WT control mice (C) and ST3Gal-IV mice pretreated with E-selectin blocking mAb 9A9 (D). Data in A and B were obtained from at least three independent experiments per group. *, P < 0.05 versus WT mice. Bars, 50 ÎŒm.<p><b>Copyright information:</b></p><p>Taken from "Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation"</p><p></p><p>The Journal of Experimental Medicine 2008;205(6):1435-1446.</p><p>Published online 9 Jun 2008</p><p>PMCID:PMC2413039.</p><p></p
    corecore