29,850 research outputs found
Time domain simulations of dynamic river networks
The problem of simulating a river network is considered. A river network is considered to comprise of rivers, dams/lakes as well as weirs. We suggest a numerical approach with specific features that enable the correct representation of these assets. For each river the flow of water is described by the shallow water equations which is a system of hyperbolic partial differential equations and at the junctions of the rivers, suitable coupling conditions, viewed as interior boundary conditions are used to couple the dynamics. A different model for the dams is also presented. Numerical test cases are presented which show that the model is able to reproduce the expected dynamics of the system.
Other aspects of the modelling such as rainfall, run-off, overflow/flooding, evaporation, absorption/seepage, bed-slopes, bed friction have not been incorporated in the model due to their specific nature
Emissivity measurements of reflective surfaces at near-millimeter wavelengths
We have developed an instrument for directly measuring the emissivity of reflective surfaces at near-millimeter wavelengths. The thermal emission of a test sample is compared with that of a reference surface, allowing the emissivity of the sample to be determined without heating. The emissivity of the reference surface is determined by one’s heating the reference surface and measuring the increase in emission. The instrument has an absolute accuracy of Δe = 5 x 10^-4 and can reproducibly measure a difference in emissivity as small as Δe = 10^-4 between flat reflective samples. We have used the instrument to measure the emissivity of metal films evaporated on glass and carbon fiber-reinforced plastic composite surfaces. We measure an emissivity of (2.15 ± 0.4) x 10^-3 for gold evaporated on glass and (2.65 ± 0.5) x 10^-3 for aluminum evaporated on carbon fiber-reinforced plastic composite
Satisfying the Einstein-Podolsky-Rosen criterion with massive particles
In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of
quantum mechanics by devising a quantum state of two massive particles with
maximally correlated space and momentum coordinates. The EPR criterion
qualifies such continuous-variable entangled states, where a measurement of one
subsystem seemingly allows for a prediction of the second subsystem beyond the
Heisenberg uncertainty relation. Up to now, continuous-variable EPR
correlations have only been created with photons, while the demonstration of
such strongly correlated states with massive particles is still outstanding.
Here, we report on the creation of an EPR-correlated two-mode squeezed state in
an ultracold atomic ensemble. The state shows an EPR entanglement parameter of
0.18(3), which is 2.4 standard deviations below the threshold 1/4 of the EPR
criterion. We also present a full tomographic reconstruction of the underlying
many-particle quantum state. The state presents a resource for tests of quantum
nonlocality and a wide variety of applications in the field of
continuous-variable quantum information and metrology.Comment: 8 pages, 7 figure
Growth Hormone (GH)-Releasing Peptide Stimulation of GH Release from Human Somatotroph Adenoma Cells: Interaction with GH-Releasing Hormone, Thyrotropin- Releasing Hormone, and Octreotide.
The synthetic hexapeptide GH-releasing peptide (GHRP; His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) specifically stimulates GH secretion in humans in vivo and in animals in vitro and in vivo via a still unknown receptor and mechanism. To determine the effect of GHRP on human somatotroph cells in vitro, we stimulated cell cultures derived from 12 different human somatotroph adenomas with GHRP alone and in combination with GH-releasing hormone (GHRH), TRH, and the somatostatin analog octreotide. GH secretion of all 12 adenoma cultures could be stimulated with GHRP, whereas GHRH was active only in 6 adenoma cultures. In GHRH-responsive cell cultures, simultaneous application of GHRH and GHRP had an additive effect on GH secretion. TRH stimulated GH release in 4 of 7 adenoma cultures; in TRH-responsive cell cultures there was also an additive effect of GHRP and TRH on GH secretion. In 5 of 9 adenoma cultures investigated, octreotide inhibited basal GH secretion. In these cell cultures, GHRP-induced GH release was suppressed by octreotide. In 5 of 5 cases, the protein kinase-C inhibitor phloretin partly inhibited GHRP-stimulated GH release, but not basal GH secretion. In summary, GH secretion was stimulated by GHRP in all somatotroph adenomas investigated, indicating that its unknown receptor and signaling pathway are expressed more consistently in somatotroph adenoma cells than those for GHRH, TRH, and somatostatin. Our data give further evidence that GHRP-stimulated GH secretion is mediated by a receptor different from that for GHRH or TRH, respectively, and that protein kinase-C is involved in the signal transduction pathway. Because human somatotroph adenoma cell cultures respond differently to various neuropeptides (GHRH, TRH, somatostatin, and others), they provide a model for further investigation of the mechanism of action of GHRP-induced GH secretion
MM Algorithms for Geometric and Signomial Programming
This paper derives new algorithms for signomial programming, a generalization
of geometric programming. The algorithms are based on a generic principle for
optimization called the MM algorithm. In this setting, one can apply the
geometric-arithmetic mean inequality and a supporting hyperplane inequality to
create a surrogate function with parameters separated. Thus, unconstrained
signomial programming reduces to a sequence of one-dimensional minimization
problems. Simple examples demonstrate that the MM algorithm derived can
converge to a boundary point or to one point of a continuum of minimum points.
Conditions under which the minimum point is unique or occurs in the interior of
parameter space are proved for geometric programming. Convergence to an
interior point occurs at a linear rate. Finally, the MM framework easily
accommodates equality and inequality constraints of signomial type. For the
most important special case, constrained quadratic programming, the MM
algorithm involves very simple updates.Comment: 16 pages, 1 figur
Mit Grünfutter und Tageslicht strahlen Hühnereier anders
Mit dem einfachen und schnellen Untersuchungsverfahren der Biophotonenanalyse lassen sich am Ei Unterschiede feststellen, die durch Haltungssystem, Fütterung und Klimafaktoren bedingt sind
Direct microwave measurement of Andreev-bound-state dynamics in a proximitized semiconducting nanowire
The modern understanding of the Josephson effect in mesosopic devices derives
from the physics of Andreev bound states, fermionic modes that are localized in
a superconducting weak link. Recently, Josephson junctions constructed using
semiconducting nanowires have led to the realization of superconducting qubits
with gate-tunable Josephson energies. We have used a microwave circuit QED
architecture to detect Andreev bound states in such a gate-tunable junction
based on an aluminum-proximitized InAs nanowire. We demonstrate coherent
manipulation of these bound states, and track the bound-state fermion parity in
real time. Individual parity-switching events due to non-equilibrium
quasiparticles are observed with a characteristic timescale . The of a topological nanowire
junction sets a lower bound on the bandwidth required for control of Majorana
bound states
Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II
Extremely radiation hard sensors are needed in particle physics experiments
to instrument the region near the beam pipe. Examples are beam halo and beam
loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial
diamond sensors are widely used. In this paper single crystal sapphire sensors
are considered as a promising alternative. Industrially grown sapphire wafers
are available in large sizes, are of low cost and, like diamond sensors, can be
operated without cooling. Here we present results of an irradiation study done
with sapphire sensors in a high intensity low energy electron beam. Then, a
multichannel direction-sensitive sapphire detector stack is described. It
comprises 8 sapphire plates of 1 cm^2 size and 525 micro m thickness,
metallized on both sides, and apposed to form a stack. Each second metal layer
is supplied with a bias voltage, and the layers in between are connected to
charge-sensitive preamplifiers. The performance of the detector was studied in
a 5 GeV electron beam. The charge collection efficiency measured as a function
of the bias voltage rises with the voltage, reaching about 10 % at 950 V. The
signal size obtained from electrons crossing the stack at this voltage is about
22000 e, where e is the unit charge.
The signal size is measured as a function of the hit position, showing
variations of up to 20 % in the direction perpendicular to the beam and to the
electric field. The measurement of the signal size as a function of the
coordinate parallel to the electric field confirms the prediction that mainly
electrons contribute to the signal. Also evidence for the presence of a
polarisation field was observed.Comment: 13 pages, 7 figures, 3 table
0.75 atoms improve the clock signal of 10,000 atoms
Since the pioneering work of Ramsey, atom interferometers are employed for
precision metrology, in particular to measure time and to realize the second.
In a classical interferometer, an ensemble of atoms is prepared in one of the
two input states, whereas the second one is left empty. In this case, the
vacuum noise restricts the precision of the interferometer to the standard
quantum limit (SQL). Here, we propose and experimentally demonstrate a novel
clock configuration that surpasses the SQL by squeezing the vacuum in the empty
input state. We create a squeezed vacuum state containing an average of 0.75
atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL
poses a significant limitation for today's microwave fountain clocks, which
serve as the main time reference. We evaluate the major technical limitations
and challenges for devising a next generation of fountain clocks based on
atomic squeezed vacuum.Comment: 9 pages, 6 figure
- …