6,791 research outputs found

    Identification of Nonlinear Parameter-Dependent Common-Structured models to accommodate varying experimental conditions and design parameter properties

    Get PDF
    This study considers the identification problem for a class of nonlinear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient common model structure selection (CMSS) algorithm, called the extended forward orthogonal regression (EFOR) algorithm, is proposed to select such a common model structure. Several examples are presented to illustrate the application and the effectiveness of the new identification approach

    An algorithm for determining the output frequency range of Volterra models with multiple inputs

    Get PDF
    A new algorithm for determining the output frequency range and the frequency components of Volterra models under multiple inputs is introduced for nonlinear system analysis. For a given Volterra model, the output frequency components corresponding to a multi-tone input can easily be calculated using the new algorithm

    Mottness induced phase decoherence suggests Bose-Einstein condensation in overdoped cuprate high-temperature superconductors

    Full text link
    Recent observations of diminishing superfluid phase stiffness in overdoped cuprate high-temperature superconductors challenges the conventional picture of superconductivity. Here, through analytic estimation and verified via variational Monte Carlo calculation of an emergent Bose liquid, we point out that Mottness of the underlying doped holes dictates a strong phase fluctuation of the superfluid at moderate carrier density. This effect turns the expected doping-increased phase stiffness into a dome shape, in good agreement with the recent observation. Specifically, the effective mass divergence due to "jamming" of the low-energy bosons reproduces the observed nonlinear relation between phase stiffness and transition temperature. Our results suggest a new paradigm, in which the high-temperature superconductivity in the cuprates is dominated by physics of Bose-Einstein condensation, as opposed to pairing-strength limited Cooper pairing.Comment: 6+3 pages, 4+1 figure

    Thermodynamics of pairing transition in hot nuclei

    Full text link
    The pairing correlations in hot nuclei 162^{162}Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities CVC_V are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.Comment: 13 pages, 4 figure

    3D Face Synthesis Driven by Personality Impression

    Full text link
    Synthesizing 3D faces that give certain personality impressions is commonly needed in computer games, animations, and virtual world applications for producing realistic virtual characters. In this paper, we propose a novel approach to synthesize 3D faces based on personality impression for creating virtual characters. Our approach consists of two major steps. In the first step, we train classifiers using deep convolutional neural networks on a dataset of images with personality impression annotations, which are capable of predicting the personality impression of a face. In the second step, given a 3D face and a desired personality impression type as user inputs, our approach optimizes the facial details against the trained classifiers, so as to synthesize a face which gives the desired personality impression. We demonstrate our approach for synthesizing 3D faces giving desired personality impressions on a variety of 3D face models. Perceptual studies show that the perceived personality impressions of the synthesized faces agree with the target personality impressions specified for synthesizing the faces. Please refer to the supplementary materials for all results.Comment: 8pages;6 figure

    Constructing an overall dynamical model for a system with changing design parameter properties

    No full text
    This study considers the identification problem for a class of non-linear parameter-varying systems associated with the following scenario: the system behaviour depends on some specifically prescribed parameter properties, which are adjustable. To understand the effect of the varying parameters, several different experiments, corresponding to different parameter properties, are carried out and different data sets are collected. The objective is to find, from the available data sets, a common parameter-dependent model structure that best fits the adjustable parameter properties for the underlying system. An efficient Common Model Structure Selection (CMSS) algorithm, called the Extended Forward Orthogonal Regression (EFOR) algorithm, is proposed to select such a common model structure. Two examples are presented to illustrate the application and the effectiveness of the new identification approach

    New Insights into the Plateau-Insulator Transition in the Quantum Hall Regime

    Full text link
    We have measured the quantum critical behavior of the plateau-insulator (PI) transition in a low-mobility InGaAs/GaAs quantum well. The longitudinal resistivity measured for two different values of the electron density follows an exponential law, from which we extract critical exponents kappa = 0.54 and 0.58, in good agreement with the value (kappa = 0.57) previously obtained for an InGaAs/InP heterostructure. This provides evidence for a non-Fermi liquid critical exponent. By reversing the direction of the magnetic field we find that the averaged Hall resistance remains quantized at the plateau value h/e^2 through the PI transition. From the deviations of the Hall resistance from the quantized value, we obtain the corrections to scaling.Comment: accepted proceedings of EP2DS-15 (to be published in Physica E
    • …
    corecore