25,670 research outputs found

    Electron-Transport Properties of Na Nanowires under Applied Bias Voltages

    Full text link
    We present first-principles calculations on electron transport through Na nanowires at finite bias voltages. The nanowire exhibits a nonlinear current-voltage characteristic and negative differential conductance. The latter is explained by the drastic suppression of the transmission peaks which is attributed to the electron transportability of the negatively biased plinth attached to the end of the nanowire. In addition, the finding that a voltage drop preferentially occurs on the negatively biased side of the nanowire is discussed in relation to the electronic structure and conduction.Comment: 4 pages, 6 figure

    Quantum critical behaviour of the plateau-insulator transition in the quantum Hall regime

    Get PDF
    High-field magnetotransport experiments provide an excellent tool to investigate the plateau-insulator phase transition in the integral quantum Hall effect. Here we review recent low-temperature high-field magnetotransport studies carried out on several InGaAs/InP heterostructures and an InGaAs/GaAs quantum well. We find that the longitudinal resistivity ρxx\rho_{xx} near the critical filling factor νc\nu_{c} ~ 0.5 follows the universal scaling law ρxx(ν,T)exp[Δν/(T/T0)κ]\rho_{xx}(\nu, T) \propto exp[-\Delta \nu/(T/T_{0})^{\kappa}], where Δν=ννc\Delta \nu =\nu -\nu_{c}. The critical exponent κ\kappa equals 0.56±0.020.56 \pm 0.02, which indicates that the plateau-insulator transition falls in a non-Fermi liquid universality class.Comment: 8 pages, accepted for publication in Proceedings of the Yamada Conference LX on Research in High Magnetic Fields (August 16-19, 2006, Sendai

    Vascular complications of cancer chemotherapy

    Get PDF
    Development of new anticancer drugs has resulted in improved mortality rates and 5-year survival rates in patients with cancer. However, many of the modern chemotherapies are associated with cardiovascular toxicities that increase cardiovascular risk in cancer patients, including hypertension, thrombosis, heart failure, cardiomyopathy, and arrhythmias. These limitations restrict treatment options and might negatively affect the management of cancer. The cardiotoxic effects of older chemotherapeutic drugs such as alkylating agents, antimetabolites, and anticancer antibiotics have been known for a while. The newer agents, such as the antiangiogenic drugs that inhibit vascular endothelial growth factor signalling are also associated with cardiovascular pathology, especially hypertension, thromboembolism, myocardial infarction, and proteinuria. Exact mechanisms by which vascular endothelial growth factor inhibitors cause these complications are unclear but impaired endothelial function, vascular and renal damage, oxidative stress, and thrombosis might be important. With increasing use of modern chemotherapies and prolonged survival of cancer patients, the incidence of cardiovascular disease in this patient population will continue to increase. Accordingly, careful assessment and management of cardiovascular risk factors in cancer patients by oncologists and cardiologists working together is essential for optimal care so that prolonged cancer survival is not at the expense of increased cardiovascular events

    Drug treatment of hypertension: focus on vascular health

    Get PDF
    Hypertension, the most common preventable risk factor for cardiovascular disease and death, is a growing health burden. Serious cardiovascular complications result from target organ damage including cerebrovascular disease, heart failure, ischaemic heart disease and renal failure. While many systems contribute to blood pressure (BP) elevation, the vascular system is particularly important because vascular dysfunction is a cause and consequence of hypertension. Hypertension is characterised by a vascular phenotype of endothelial dysfunction, arterial remodelling, vascular inflammation and increased stiffness. Antihypertensive drugs that influence vascular changes associated with high BP have greater efficacy for reducing cardiovascular risk than drugs that reduce BP, but have little or no effect on the adverse vascular phenotype. Angiotensin converting enzyme ACE inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) improve endothelial function and prevent vascular remodelling. Calcium channel blockers also improve endothelial function, although to a lesser extent than ACEIs and ARBs. Mineralocorticoid receptor blockers improve endothelial function and reduce arterial stiffness, and have recently become more established as antihypertensive drugs. Lifestyle factors are essential in preventing the adverse vascular changes associated with high BP and reducing associated cardiovascular risk. Clinicians and scientists should incorporate these factors into treatment decisions for patients with high BP, as well as in the development of new antihypertensive drugs that promote vascular health

    Single-particle and Interaction Effects on the Cohesion and Transport and Magnetic Properties of Metal Nanowires at Finite Voltages

    Full text link
    The single-particle and interaction effects on the cohesion, electronic transport, and some magnetic properties of metallic nanocylinders have been studied at finite voltages by using a generalized mean-field electron model. The electron-electron interactions are treated in the self-consistent Hartree approximation. Our results show the single-particle effect is dominant in the cohesive force, while the nonzero magnetoconductance and magnetotension coefficients are attributed to the interaction effect. Both single-particle and interaction effects are important to the differential conductance and magnetic susceptibility.Comment: 5 pages, 6 figure

    Thermodynamic properties of Holstein polarons and the effects of disorder

    Full text link
    The ground state and finite temperature properties of polarons are studied considering a two-site and a four-site Holstein model by exact diagonalization of the Hamiltonian. The kinetic energy, Drude weight, correlation functions involving charge and lattice deformations, and the specific heat have been evaluated as a function of electron-phonon (e-ph) coupling strength and temperature. The effects of site diagonal disorder on the above properties have been investigated. The disorder is found to suppress the kinetic energy and the Drude weight, reduces the spatial extension of the polaron, and makes the large-to-small polaron crossover smoother. Increasing temperature also plays similar role. For strong coupling the kinetic energy arises mainly from the incoherent hopping processes owing to the motion of electrons within the polaron and is almost independent of the disorder strength. From the coherent and incoherent contributions to the kinetic energy, the temperature above which the incoherent part dominates is determined as a function of e-ph coupling strength.Comment: 17 pages. 17 figure

    Embolization in an adrenocortical carcinoma as palliative therapy

    Get PDF
    Background: With an annual incidence of 0.2% of new cases per 100,000 inhabitants, adrenocortical carcinoma is rare. In advanced tumor only palliative treatment modalities are practicable. Because of scarcity of the tumor, standard treatment has not been defined. The decision on therapy frequently depends on the individual situation. Tumor embolization and chemotherapy are amongst the possible options. Patient and Methods: We report on a case of a 32-year-old female patient with a large-volume hormonally active adrenocortical carcinoma and hematogenous liver metastases. This carcinoma was confirmed histologically by means of liver biopsy. Owing to the large tumor extent and metastatic spreading and also in view of the poor general condition of the patient, curative surgical therapy was not possible. For this reason, a local approach was chosen primarily with transarterial tumor embolization at the capillary level. Systemic chemotherapy was given afterwards. Results: Improvement of the patient's general condition, especially the pronounced pain symptoms, could be achieved for a short time by the embolization: both, the patient's clinical condition and the laboratory test parameters improved. However, a rapid tumor progression occured under chemotherapy, which was started after embolization. Conclusion: In advanced adrenocortical carcinoma, tumor embolization can lead to a stabilization of the disease and improvement of the symptoms as appraised by palliative criteria in some patients

    Determining ethylene group disorder levels in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Get PDF
    We present a detailed structural investigation of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br at temperatures TT from 9 to 300 K. Anomalies in the TT dependence of the lattice parameters are associated with a glass-like transition previously reported at TgT_g = 77 K. From structure refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space group {\it Pnma}, is established at all temperatures. Further, we extract the TT dependence of the occupation factor of the eclipsed conformation of the terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %, with an increase to 97(3) % at 9 K. We conclude that the glass-like transition is not primarily caused by configurational freezing-out of the ethylene groups
    corecore