975 research outputs found
I=3/2 Scattering in the Nonrelativisitic Quark Potential Model
We study elastic scattering to Born order using
nonrelativistic quark wavefunctions in a constituent-exchange model. This
channel is ideal for the study of nonresonant meson-meson scattering amplitudes
since s-channel resonances do not contribute significantly. Standard quark
model parameters yield good agreement with the measured S- and P-wave phase
shifts and with PCAC calculations of the scattering length. The P-wave phase
shift is especially interesting because it is nonzero solely due to
symmetry breaking effects, and is found to be in good agreement with experiment
given conventional values for the strange and nonstrange constituent quark
masses.Comment: 12 pages + 2 postscript figures, Revtex, MIT-CTP-210
Density functional method for nonequilibrium electron transport
We describe an ab initio method for calculating the electronic structure,
electronic transport, and forces acting on the atoms, for atomic scale systems
connected to semi-infinite electrodes and with an applied voltage bias. Our
method is based on the density functional theory (DFT) as implemented in the
well tested Siesta approach (which uses non-local norm-conserving
pseudopotentials to describe the effect of the core electrons, and linear
combination of finite-range numerical atomic orbitals to describe the valence
states). We fully deal with the atomistic structure of the whole system,
treating both the contact and the electrodes on the same footing. The effect of
the finite bias (including selfconsistency and the solution of the
electrostatic problem) is taken into account using nonequilibrium Green's
functions. We relate the nonequilibrium Green's function expressions to the
more transparent scheme involving the scattering states. As an illustration,
the method is applied to three systems where we are able to compare our results
to earlier ab initio DFT calculations or experiments, and we point out
differences between this method and existing schemes. The systems considered
are: (1) single atom carbon wires connected to aluminum electrodes with
extended or finite cross section, (2) single atom gold wires, and finally (3)
large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure
On the spherical-axial transition in supernova remnants
A new law of motion for supernova remnant (SNR) which introduces the quantity
of swept matter in the thin layer approximation is introduced. This new law of
motion is tested on 10 years observations of SN1993J. The introduction of an
exponential gradient in the surrounding medium allows to model an aspherical
expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR,
SN1987a, are modeled. In the case of SN1987a the three observed rings are
simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics &
Space Science in the year 201
IRF4 and BATF are critical for CD8(+) T-cell function following infection with LCMV.
CD8(+) T-cell functions are critical for preventing chronic viral infections by eliminating infected cells. For healthy immune responses, beneficial destruction of infected cells must be balanced against immunopathology resulting from collateral damage to tissues. These processes are regulated by factors controlling CD8(+) T-cell function, which are still incompletely understood. Here, we show that the interferon regulatory factor 4 (IRF4) and its cooperating binding partner B-cell-activating transcription factor (BATF) are necessary for sustained CD8(+) T-cell effector function. Although Irf4(-/-) CD8(+) T cells were initially capable of proliferation, IRF4 deficiency resulted in limited CD8(+) T-cell responses after infection with the lymphocytic choriomeningitis virus. Consequently, Irf4(-/-) mice established chronic infections, but were protected from fatal immunopathology. Absence of BATF also resulted in reduced CD8(+) T-cell function, limited immunopathology, and promotion of viral persistence. These data identify the transcription factors IRF4 and BATF as major regulators of antiviral cytotoxic T-cell immunity
Secondary Beam Monitors for the NuMI Facility at FNAL
The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino
beam which produces muon neutrinos by focusing a beam of mesons into a long
evacuated decay volume. We have built four arrays of ionization chambers to
monitor the position and intensity of the hadron and muon beams associated with
neutrino production at locations downstream of the decay volume. This article
describes the chambers' construction, calibration, and commissioning in the
beam.Comment: Accepted for publication in Nucl. Instr. Meth.
Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms
We develop a theory of Tannakian Galois groups for t-motives and relate this
to the theory of Frobenius semilinear difference equations. We show that the
transcendence degree of the period matrix associated to a given t-motive is
equal to the dimension of its Galois group. Using this result we prove that
Carlitz logarithms of algebraic functions that are linearly independent over
the rational function field are algebraically independent.Comment: 39 page
The Physics of turbulent and dynamically unstable Herbig-Haro jets
The overall properties of the Herbig-Haro objects such as centerline
velocity, transversal profile of velocity, flow of mass and energy are
explained adopting two models for the turbulent jet. The complex shapes of the
Herbig-Haro objects, such as the arc in HH34 can be explained introducing the
combination of different kinematic effects such as velocity behavior along the
main direction of the jet and the velocity of the star in the interstellar
medium. The behavior of the intensity or brightness of the line of emission is
explored in three different cases : transversal 1D cut, longitudinal 1D cut and
2D map. An analytical explanation for the enhancement in intensity or
brightness such as usually modeled by the bow shock is given by a careful
analysis of the geometrical properties of the torus.Comment: 17 pages, 10 figures. Accepted for publication in Astrophysics &
Spac
Berry phases and pairing symmetry in Holstein-Hubbard polaron systems
We study the tunneling dynamics of dopant-induced hole polarons which are
self-localized by electron-phonon coupling in a two-dimensional antiferro-
magnet. Our treatment is based on a path integral formulation of the adia-
batic approximation, combined with many-body tight-binding, instanton, con-
strained lattice dynamics, and many-body exact diagonalization techniques. Our
results are mainly based on the Holstein- and, for comparison, on the
Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and
long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics
is mapped onto an effective low-energy Hamiltonian which takes the form of a
fermion tight-binding model with occupancy dependent, predominant- ly 2nd and
3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an
effective intersite charge interactions. Antiferromagnetic spin correlations in
the original many-electron Hamiltonian are reflected by an attractive
contribution to the 1st neighbor charge interaction and by Berry phase factors
which determine the signs of effective polaron tunneling ma- trix elements. In
the two-polaron case, these phase factors lead to polaron pair wave functions
of either -wave symmetry or p-wave symme- try with zero and
nonzero total pair momentum, respectively. Implications for the doping
dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair
condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure
Parity-Violating Interaction Effects I: the Longitudinal Asymmetry in pp Elastic Scattering
The proton-proton parity-violating longitudinal asymmetry is calculated in
the lab-energy range 0--350 MeV, using a number of different, latest-generation
strong-interaction potentials--Argonne V18, Bonn-2000, and Nijmegen-I--in
combination with a weak-interaction potential consisting of rho- and
omega-meson exchanges--the model known as DDH. The complete scattering problem
in the presence of parity-conserving, including Coulomb, and parity-violating
potentials is solved in both configuration- and momentum-space. The predicted
parity-violating asymmetries are found to be only weakly dependent upon the
input strong-interaction potential adopted in the calculation. Values for the
rho- and omega-meson weak coupling constants and
are determined by reproducing the measured asymmetries at 13.6 MeV, 45 MeV, and
221 MeV.Comment: 24 pages, 8 figures, submitted to Physical Review
- …
