2 research outputs found

    How to design a dose-finding study using the continual reassessment method

    Get PDF
    Abstract Introduction The continual reassessment method (CRM) is a model-based design for phase I trials, which aims to find the maximum tolerated dose (MTD) of a new therapy. The CRM has been shown to be more accurate in targeting the MTD than traditional rule-based approaches such as the 3 + 3 design, which is used in most phase I trials. Furthermore, the CRM has been shown to assign more trial participants at or close to the MTD than the 3 + 3 design. However, the CRM’s uptake in clinical research has been incredibly slow, putting trial participants, drug development and patients at risk. Barriers to increasing the use of the CRM have been identified, most notably a lack of knowledge amongst clinicians and statisticians on how to apply new designs in practice. No recent tutorial, guidelines, or recommendations for clinicians on conducting dose-finding studies using the CRM are available. Furthermore, practical resources to support clinicians considering the CRM for their trials are scarce. Methods To help overcome these barriers, we present a structured framework for designing a dose-finding study using the CRM. We give recommendations for key design parameters and advise on conducting pre-trial simulation work to tailor the design to a specific trial. We provide practical tools to support clinicians and statisticians, including software recommendations, and template text and tables that can be edited and inserted into a trial protocol. We also give guidance on how to conduct and report dose-finding studies using the CRM. Results An initial set of design recommendations are provided to kick-start the design process. To complement these and the additional resources, we describe two published dose-finding trials that used the CRM. We discuss their designs, how they were conducted and analysed, and compare them to what would have happened under a 3 + 3 design. Conclusions The framework and resources we provide are aimed at clinicians and statisticians new to the CRM design. Provision of key resources in this contemporary guidance paper will hopefully improve the uptake of the CRM in phase I dose-finding trials

    A phase-I trial of pre-operative, margin intensive, stereotactic body radiation therapy for pancreatic cancer: the 'SPARC' trial protocol.

    Get PDF
    BACKGROUND: Standard therapy for borderline-resectable pancreatic cancer in the UK is surgery with adjuvant chemotherapy, but rates of resection with clear margins are unsatisfactory and overall survival remains poor. Meta-analysis of single-arm studies shows the potential of neo-adjuvant chemo-radiotherapy but the relative radio-resistance of pancreatic cancer means the efficacy of conventional dose schedules is limited. Stereotactic radiotherapy achieves sufficient accuracy and precision to enable pre-operative margin-intensive dose escalation with the goal of increasing rates of clear resection margins and local disease control. METHODS/DESIGN: SPARC is a "rolling-six" design single-arm study to establish the maximum tolerated dose for margin-intensive stereotactic radiotherapy before resection of pancreatic cancer at high risk of positive resection margins. Eligible patients will have histologically or cytologically proven pancreatic cancer defined as borderline-resectable per National Comprehensive Cancer Network criteria or operable tumour in contact with vessels increasing the risk of positive margin. Up to 24 patients will be recruited from up to 5 treating centres and a 'rolling-six' design is utilised to minimise delays and facilitate ongoing recruitment during dose-escalation. Radiotherapy will be delivered in 5 daily fractions and surgery, if appropriate, will take place 5-6 weeks after radiotherapy. The margin-intense radiotherapy concept includes a systematic method to define the target volume for a simultaneous integrated boost in the region of tumour-vessel infiltration, and up to 4 radiotherapy dose levels will be investigated. Maximum tolerated dose is defined as the highest dose at which no more than 1 of 6 patients or 0 of 3 patients experience a dose limiting toxicity. Secondary endpoints include resection rate, resection margin status, response rate, overall survival and progression free survival at 12 and 24 months. Translational work will involve exploratory analyses of the cytological and humoral immunological responses to stereotactic radiotherapy in pancreatic cancer. Radiotherapy quality assurance of target definition and radiotherapy planning is enforced with pre-trial test cases and on-trial review. Recruitment began in April 2015. DISCUSSION: This prospective multi-centre study aims to establish the maximum tolerated dose of pre-operative margin-intensified stereotactic radiotherapy in pancreatic cancer at high risk of positive resection margins with a view to subsequent definitive comparison with other neoadjuvant treatment options
    corecore