70 research outputs found

    Accuracy of IGBT junction temperature prediction: an improved sailfish algorithm to optimize support vector machine

    Get PDF
    This study improves the accuracy of junction temperature prediction, as the insulated gate bipolar transistor (IGBT) reliability is important for the safe operation of its working system due to junction temperature is limited in its actual performance and reliability. A model based on an improved sailfish optimization algorithm to optimize support vector machine (ISFO-SVM) is proposed to solve the problem that the junction temperature prediction accuracy is not high enough. The proposed algorithm is improved by adaptive nonlinear iterative factor, Le'vy flight and differential mutation strategy to optimize the support vector machine (SVM) internal parameters to predict junction temperature. The results indicate that ISFO-SVM performs better under the same evaluation indexes. The root mean squared error average value decreased by 67.189%, and the mean absolute percentage error average value decreased by 63.189%, compared with the sailfish optimization algorithm to optimize the SVM. The prediction error of ISFO-SVM is smaller and the error value is in the [-5 °C, 5 °C] range accounting for 98.270% of the total test samples. ISFO-SVM has a higher fitting degree than the actual junction temperature and the R2 has reached 99.660%. The model predicts the junction temperature of IGBT modules and provides scientific guidance for system reliability evaluation to maintain safe and stable operation effectively

    Oil absorption stability of modified cellulose porous materials with super compressive strength in the complex environment

    Get PDF
    The occurrence of oil spills has severe damage upon both the environment and human health. Hence, the development of a green, recyclable, complex environment resistant, and efficient oil–water separation aerogel is required in order to effectively absorb marine or industrial oil. In this study, modified cellulose/N,N'-methylenebisacrylamide/tannin (PCMT) composite porous materials were prepared utilizing the sol–gel method and were modified with tertbutyl acrylate. PCMT possesses a three-dimensional interpenetrating porous structure, exhibiting remarkable oil–water separation performance and excellent compressive strength (PCMT can capable of bearing 7000 times its own weight; PCMT can endure 290.3 kPa pressure at 80% strain when the amount of tannin is 0.2 g). The unique pore structure of PCMT engenders differential oil adsorption capacities (PCMT0, PCMT0.05, PCMT0.1, and PCMT0.2 evince higher adsorption capacities for petroleum ether and dichloromethane, n-hexane and dichloromethane, toluene, and toluene and dichloromethane, respectively). Of critical import, PCMT demonstrates exceptional adaptability to complex environments, wherein the porous materials maintain good hydrophobicity and oil absorption capacity under conditions of vigorous stirring, a wide pH range (1–14), a wide temperature range (4–160 °C), ultraviolet irradiation (8 h), and tape peeling (10 times). Moreover, the porous materials may be employed for the recovery of oil through simple mechanical extrusion, thus demonstrating certain economic significance and the application potential in the treatment of oil spills.publishedVersio

    The effects of smoke-free legislation on acute myocardial infarction: A systematic review and meta-analysis

    Get PDF
    Background: Comprehensive smoke-free legislation has been implemented in many countries. The current study quantitatively examined the reduction in risk of acute myocardial infarction (MI) occurrence following the legislations and the relationship with the corresponding smoking prevalence decrease. Methods. PubMed, EMBASE, and Google Scholar databases and bibliographies of relevant studies and reviews were searched for potential original studies published from January 1, 2004, through October 31, 2011. Meta-analysis was performed using a random effect model to estimate the overall effects of the smoking-free legislations. Meta-regression was used to investigate possible causes of heterogeneity in risk estimates. Results: A total of 18 eligible studies with 44 estimates of effect size were used in this study. Meta-analysis produced a pooled estimate of the relative risk of 0.87 (95% confidence interval (CI): 0.84 to 0.91). There was significant heterogeneity in the risk estimates (overall I2 = 96.03%, p<0.001). In meta-regression analysis, studies with greater smoking prevalence decrease produced larger relative risk (adjusted coefficient -0.027, 95% CI: -0.049 to -0.006, p=0.014). Conclusion: Smoke-free legislations in public and work places were associated with significant reduction in acute MI risk, which might be partly attributable to reduced smoking prevalence. © 2013 Lin et al.; licensee BioMed Central Ltd.link_to_subscribed_fulltex

    Improving power quality efficient in demand response: Aggregated heating, ventilation and air-conditioning systems

    Get PDF
    This study aims to identify the role of aggregated heating, ventilation, and air conditioning (HVAC) loads based on system characteristics using the lazy state switching control mode focusing on the overall power consumption rather individual response speed. This study is attempted to provide secondary frequency regulation using aggregated HVAC loads with more stable operation with the lazy state switching control mode based on conditional switching of the HVAC unit’s working state. The stability of power consumption improves power quality in smart grid design and operation. The aggregated HVAC must reach a stable condition before tracking the automatic generation control signal and fully developed smart grids complex structure. Still, HVAC slowed responses make inappropriate for faster demand response services. Unsuitable control algorithm leads to system instability and HVAC unit overuse. An extended command processing on the client side is proposed to deal with the adjusting command. The unique advantages of the proposed algorithm are three folds. (1) the control algorithm preserves its working state and has nothing conflicting with the lockout constraints for individual system units; (2) the control algorithm shows promising performance in smoothing the overall power consumption for the aggregated population; and (3) the control logic is fully compatible with other control algorithms. The proposed modeling and control strategy are validated against simulations of thousands of units, and the simulation result indicates that the proposed approach has promising performance in smoothing the power consumption of aggregate units’ population

    Spectral broadening of a single Ce3+-doped garnet by chemical unit cosubstitution for near ultraviolet LED

    Get PDF
    In this paper, the isostructural Mg3Al2Si3O12 was introduced into the Ce3+-doped yttrium aluminum garnet (Y3Al5O12) for synthesizing (Y1-xMgx)3Al2(Al1-xSix)3O12:Ce3+ (x = 0-0.6) solid solution phosphors. The co-substitution of the (Mg, Si)6+ pair for the (Y, Al)6+ pair leads to lattice shrinkage and then changes the spectral shape and width. The band peaking at ~450 nm shows a substantial broadening with the full width at half maximum increasing from 65 nm to 94 nm. The intensity of excitation spectrum (x = 0.5) at 400 nm is increased by 50% than that (x = 0). The near ultraviolet LED was fabricated with Y1.5Mg1.5Al3.5Si1.5O12:Ce3+ phosphors and a 400 nm chip and can emit strong white light. Therefore, by controlling the content of (Y, Al)6+ substituted by (Mg, Si)6+, the excitation spectrum of Ce3+-doped Y3Al5O12 can be tuned and applied for the near ultraviolet LEDs

    Zinc finger and SCAN domain containing 1, ZSCAN1, is a novel stemness-related tumor suppressor and transcriptional repressor in breast cancer targeting TAZ

    Get PDF
    IntroductionCancer stem cells (CSCs) targeted therapy holds the potential for improving cancer management; identification of stemness-related genes in CSCs is necessary for its development.MethodsThe Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets were used for survival analysis. ZSCAN1 correlated genes was identified by Spearman correlation analysis. Breast cancer stem-like cells (BCSLCs) were isolated by sorting CD44+CD24- cells from suspension cultured breast cancer (BC) spheroids. The sphere-forming capacity and sphere- and tumor-initiating capacities were determined by sphere formation and limiting dilution assays. The relative gene expression was determined by qRT-PCR, western blot. Lentivirus system was used for gene manipulation. Nuclear run-on assay was employed to examine the levels of nascent mRNAs. DNA pull-down and Chromatin immunoprecipitation (ChIP) assays were used for determining the interaction between protein and target DNA fragments. Luciferase reporter assay was used for evaluating the activity of the promoter.Results and discussionZSCAN1 is aberrantly suppressed in BC, and this suppression indicates a bad prognosis. Ectopic expression of ZSCAN1 inhibited the proliferation, clonogenicity, and tumorigenicity of BC cells. ZSCAN1-overexpressing BCSLCs exhibited weakened stemness properties. Normal human mammary epithelial (HMLE) cells with ZSCAN1 depletion exhibited enhanced stemness properties. Mechanistic studies showed that ZSCAN1 directly binds to -951 ~ -925bp region of WWTR1 (encodes TAZ) promoter, inhibits WWTR1 transcription, thereby inhibiting the stemness of BCSCs. Our work thus revealed ZSCAN1 as a novel stemness-related tumor suppressor and transcriptional repressor in BC

    Network Analysis of Oyster Transcriptome Revealed a Cascade of Cellular Responses during Recovery after Heat Shock

    Get PDF
    Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • 

    corecore