918 research outputs found

    Reversibility in Massive Concurrent Systems

    Get PDF
    Reversing a (forward) computation history means undoing the history. In concurrent systems, undoing the history is not performed in a deterministic way but in a causally consistent fashion, where states that are reached during a backward computation are states that could have been reached during the computation history by just performing independent actions in a different order.Comment: Presented at MeCBIC 201

    High resolution fire hazard index based on satellite images

    Get PDF
    In December 2015, after 3 year of activity, the FP7 project PREFER (Space-based Information Support for Prevention and REcovery of Forest Fires Emergency in the MediteRranean Area) came to an end. The project was designed to respond to the need to improve the use of satellite images in applications related to the emergency services, in particular, to forest fires. The project aimed at developing, validating and demonstrating information products based on optical and SAR (Synthetic Aperture Radar) imagery for supporting the prevention of forest fires and the recovery/damage assessment of burnt area. The present paper presents an improved version of one of the products developed under the PREFER project, which is the Daily Fire Hazard Index (DFHI)

    Oil spill detection using optical sensors: a multi-temporal approach

    Get PDF
    Oil pollution is one of the most destructive consequences due to human activities in the marine environment. Oil wastes come from many sources and take decades to be disposed of. Satellite based remote sensing systems can be implemented into a surveillance and monitoring network. In this study, a multi-temporal approach to the oil spill detection problem is investigated. Change Detection (CD) analysis was applied to MODIS/Terra and Aqua and OLI/Landsat 8 images of several reported oil spill events, characterized by different geographic location, sea conditions, source and extension of the spill. Toward the development of an automatic detection algorithm, a Change Vector Analysis (CVA) technique was implemented to carry out the comparison between the current image of the area of interest and a dataset of reference image, statistically analyzed to reduce the sea spectral variability between different dates. The proposed approach highlights the optical sensors’ capabilities in detecting oil spills at sea. The effectiveness of different sensors’ resolution towards the detection of spills of different size, and the relevance of the sensors’ revisiting time to track and monitor the evolution of the event is also investigated

    A framework for deadlock detection in core ABS

    Get PDF
    We present a framework for statically detecting deadlocks in a concurrent object-oriented language with asynchronous method calls and cooperative scheduling of method activations. Since this language features recursion and dynamic resource creation, deadlock detection is extremely complex and state-of-the-art solutions either give imprecise answers or do not scale. In order to augment precision and scalability we propose a modular framework that allows several techniques to be combined. The basic component of the framework is a front-end inference algorithm that extracts abstract behavioural descriptions of methods, called contracts, which retain resource dependency information. This component is integrated with a number of possible different back-ends that analyse contracts and derive deadlock information. As a proof-of-concept, we discuss two such back-ends: (i) an evaluator that computes a fixpoint semantics and (ii) an evaluator using abstract model checking.Comment: Software and Systems Modeling, Springer Verlag, 201

    A multi-temporal phenology based classification approach for Crop Monitoring in Kenya

    Get PDF
    The SBAM (Satellite Based Agricultural Monitoring) project, funded by the Italian Space Agency aims at: developing a validated satellite imagery based method for estimating and updating the agricultural areas in the region of Central-Africa; implementing an automated process chain capable of providing periodical agricultural land cover maps of the area of interest and, possibly, an estimate of the crop yield. The project aims at filling the gap existing in the availability of high spatial resolution maps of the agricultural areas of Kenya. A high spatial resolution land cover map of Central-Eastern Africa including Kenya was compiled in the year 2000 in the framework of the Africover project using Landsat images acquired, mostly, in 1995. We investigated the use of phenological information in supporting the use of remotely sensed images for crop classification and monitoring based on Landsat 8 and, in the near future, Sentinel 2 imagery. Phenological information on crop condition was collected using time series of NDVI (Normalized Difference Vegetation Index) based on Landsat 8 images. Kenyan countryside is mainly characterized by a high number of fragmented small and medium size farmlands that dramatically increase the difficulty in classification; 30 m spatial resolution images are not enough for a proper classification of such areas. So, a pan-sharpening FIHS (Fast Intensity Hue Saturation) technique was implemented to increase image resolution from 30 m to 15 m. Ground test sites were selected, searching for agricultural vegetated areas from which phenological information was extracted. Therefore, the classification of agricultural areas is based on crop phenology, vegetation index behaviour retrieved from a time series of satellite images and on AEZ (Agro Ecological Zones) information made available by FAO (FAO, 1996) for the area of interest. This paper presents the results of the proposed classification procedure in comparison with land cover maps produced in the past years by other projects. The results refer to the Nakuru County and they were validated using field campaigns data. It showed a satisfactory overall accuracy of 92.66 % which is a significant improvement with respect to previous land cover maps

    A small satellite mission devoted to mid-low latitude earth observation

    Get PDF
    This paper aims at assessing the feasibility of a small mission devoted to observe the mid-low latitude regions. The satellite will be equipped with three optical sensors: a medium-high spatial resolution VIS-NIR multi-spectral sensor, allowing the surface monitoring and land-use and land-cover studies; a medium spatial-resolution 3-bands thermal (MIR-TIR) sensor allowing the surface temperature (LST, SST) estimate and hot-spots (fires, volcanic eruption, etc.) detection; a panchromatic VIS-NIR camera for night-time observation able to reveal artificial and natural lights. The selected orbit, called multi-sun-synchronous (MSS), represents an innovation with respect to the classical sun-synchronous orbit much suitable for observing tropical regions, allowing an enhanced revisit frequency. Further, such an orbit allows the observation of the same region of the Earth at different local-time. In this way, the diurnal cycle of surface temperatures can be reconstructed with a 2-hours local-time step. An analysis of the capability of the selected ground stations to acquire the data gathered by the remote sensing sensors has been carried out. Orbital perturbations have been taken into account and an estimate of the propellant required for ground track control has been performed in order to verify its compatibility with a small mission requirements

    Diverse applications of the Quantum Walk model in Quantum Information: a theoretical and experimental analysis in the optical framework

    Get PDF
    Quantum Walks have been a very important model in the last thirty years, after their first definition and rigorous description. The analysis of the many possible variations of their behavior has delivered a plethora of solutions and platforms for the many diverse fields of investigation. The applications of the Quantum Walk model spreads from the development of Quantum Algorithm, to the modeling and simulation of systems of the most diverse nature, such as solid state or biological systems. In general, it helped developing a well-established quantum (or coherent) propagation model, which is useful both inside and outside physics. In this thesis, we focus on the study of disordered Quantum Walks, in order to get better understanding of the inuence of Quantum Walk disordered dynamics to non-classical correlations and propagating quantum information. Afterwards, we generalize this dynamical approach to Quantum Information processing, developing a Quantum Receiver for Quantum State Discrimination featuring a time multiplexing structure and we investigate the potentiality of this Quantum Walk inspired framework in the field of Quantum State Discrimination, through the developing and realization of experimental protocols characterized by increasing complexity. We also report on some apparent deviations from this path, although still aimed at the transfer of our expertise, built in previous investigations, to the study of new models and more complex quantum systems
    • …
    corecore