269 research outputs found

    Measurement of the 6Li(e,e'p) reaction cross sections at low momentum transfer

    Full text link
    The triple differential cross sections for the 6Li(e,e'p) reaction have been measured in the excitation energy region from 27 to 46 MeV in a search for evidence of the giant dipole resonance (GDR) in 6Li. The cross sections have no distinct structures in this energy region, and decrease smoothly with the energy transfer. Angular distributions are different from those expected with the GDR. Protons are emitted strongly in the momentum-transfer direction. The data are well reproduced by a DWIA calculation assuming a direct proton knockout process.Comment: 19 pages, 7 figures, revised text, to be published in Nucl. Phys.

    Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Get PDF
    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP). For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity), drought propagation features (pooling, attenuation, lag, lengthening), and hydrological drought typology (<i>classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought</i>). <br><br> Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of <i>classical rainfall deficit droughts</i>, and an underestimation of <i>wet-to-dry-season droughts</i> and snow-related droughts. Furthermore, almost no <i>composite droughts</i> were simulated for slowly responding areas, while many multi-year drought events were expected in these systems. <br><br> We conclude that most drought propagation processes are reasonably well reproduced by the ensemble mean of large-scale models in contrasting catchments in Europe. Challenges, however, remain in catchments with cold and semi-arid climates and catchments with large storage in aquifers or lakes. This leads to a high uncertainty in hydrological drought simulation at large scales. Improvement of drought simulation in large-scale models should focus on a better representation of hydrological processes that are important for drought development, such as evapotranspiration, snow accumulation and melt, and especially storage. Besides the more explicit inclusion of storage in large-scale models, also parametrisation of storage processes requires attention, for example through a global-scale dataset on aquifer characteristics, improved large-scale datasets on other land characteristics (e.g. soils, land cover), and calibration/evaluation of the models against observations of storage (e.g. in snow, groundwater)

    Human-induced changes in Indonesian peatlands increase drought severity

    Get PDF
    Indonesian peatlands are critical to the global carbon cycle, but they also support a large number of local economies. Intense forest clearing and draining in these peatlands is causing severe ecological and environmental impacts. Most studies highlighted increased carbon emission in the region through drought and large-scale fires, further accelerating peatland degradation. Yet, little is known about the long-term impacts of human-induced disturbance on peatland hydrology in the tropics. Here we show that converting natural peat forests to plantations can significantly alter the hydrological system far worse than previously recognized, leading to amplified moisture stress and drought severity. This study quantified how human-induced changes to Indonesian peatlands have affected drought severity. Through field observations and modelling, we demonstrate that canalization doubled drought severity; logging and starting plantations even quadrupled drought severity. Recognizing the importance of peatlands to Indonesia, proper management, and rehabilitating peatlands remain the only viable option for continued plantation use

    Optimisation of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    Get PDF
    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3 % with practically no degradation from bending. For reduction of the coupling loss, specific choices of the cabling twist sequence are needed with the aim to minimize the area of linked strands and bundles that are coupled and form loops with the applied changing magnetic field, instead of simply avoiding longer pitches. In addition we recommend increasing the wrap coverage of the CS conductor from 50 % to at least 70 %. The models predict significant improvement against strain sensitivity and substantial decrease of the AC coupling loss in Nb3Sn CICCs, but also for NbTi CICCs minimization of the coupling loss can be achieved. Although the success of long pitches to transverse load degradation was already demonstrated, the prediction of the combination with low coupling loss needs to be validated by a short sample test.Comment: to be published in Supercond Sci Techno

    3s Proton Holes in the Ground State of 208-Pb

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
    corecore