19,184 research outputs found
Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps
Ultracold hybrid ion-atom traps offer the possibility of microscopic
manipulation of quantum coherences in the gas using the ion as a probe.
However, inelastic processes, particularly charge transfer can be a significant
process of ion loss and has been measured experimentally for the Yb ion
immersed in a Rb vapour. We use first-principles quantum chemistry codes to
obtain the potential energy curves and dipole moments for the lowest-lying
energy states of this complex. Calculations for the radiative decay processes
cross sections and rate coefficients are presented for the total decay
processes. Comparing the semi-classical Langevin approximation with the quantum
approach, we find it provides a very good estimate of the background at higher
energies. The results demonstrate that radiative decay mechanisms are important
over the energy and temperature region considered. In fact, the Langevin
process of ion-atom collisions dominates cold ion-atom collisions. For spin
dependent processes \cite{kohl13} the anisotropic magnetic dipole-dipole
interaction and the second-order spin-orbit coupling can play important roles,
inducing couplingbetween the spin and the orbital motion. They measured the
spin-relaxing collision rate to be approximately 5 orders of magnitude higher
than the charge-exchange collision rate \cite{kohl13}. Regarding the measured
radiative charge transfer collision rate, we find that our calculation is in
very good agreement with experiment and with previous calculations.
Nonetheless, we find no broad resonances features that might underly a strong
isotope effect. In conclusion, we find, in agreement with previous theory that
the isotope anomaly observed in experiment remains an open question.Comment: 7 figures, 1 table accepted for publication in J. Phys. B: At. Mol.
Opt. Phys. arXiv admin note: text overlap with arXiv:1107.114
Dry matter yields and quality of organic lupin/cereal mixtures for wholecrop forage
In view of climate change predictions and the general desirability of increasing the amount of home grown protein, a case exists for the investigation of lupins and lupin/cereal bicrop combinations as wholecrop forage on organic farms. A replicated randomised block trial is described which took place at the Royal Agricultural College, Cirencester, in 2005. This involved spring sown blue, white and yellow lupins, millet, wheat and triticale and lupin/cereal bi-crops. Data for dry matter yields for wholecrop silage, crude protein, MAD fi bre content and estimated ME, are presented for a single harvest. It is concluded that white lupins and white lupin bi-crops with spring wheat or triticale offer the best prospects for a viable wholecrop forage crop in an organic situation
REQUIREMENT OF THYMUS (T) LYMPHOCYTES FOR RESISTANCE TO LISTERIOSIS
Spleen cells of mice infected with Listeria monocytogenes were adoptively transferred to normal mice. Such lymphocytes conferred resistance to a lethal challenge with Listeria. Hyperimmunization of the donor reduces the number of cells necessary to transfer effective immunity. Such spleen cells if treated with anti-θ serum do not transfer resistance to Listeria. Hence, thymus (T) lymphocytes are involved in the resistance to infection with the facultative intracellular bacteria L. monocytogenes
An Alternative Parameterization of R-matrix Theory
An alternative parameterization of R-matrix theory is presented which is
mathematically equivalent to the standard approach, but possesses features
which simplify the fitting of experimental data. In particular there are no
level shifts and no boundary-condition constants which allows the positions and
partial widths of an arbitrary number levels to be easily fixed in an analysis.
These alternative parameters can be converted to standard R-matrix parameters
by a straightforward matrix diagonalization procedure. In addition it is
possible to express the collision matrix directly in terms of the alternative
parameters.Comment: 8 pages; accepted for publication in Phys. Rev. C; expanded Sec. IV,
added Sec. VI, added Appendix, corrected typo
Masses, Luminosities, and Orbital Coplanarities of the mu Orionis Quadruple Star System from PHASES Differential Astrometry
mu Orionis was identified by spectroscopic studies as a quadruple star
system. Seventeen high precision differential astrometry measurements of mu Ori
have been collected by the Palomar High-precision Astrometric Search for
Exoplanet Systems (PHASES). These show both the motion of the long period
binary orbit and short period perturbations superimposed on that caused by each
of the components in the long period system being themselves binaries. The new
measurements enable the orientations of the long period binary and short period
subsystems to be determined. Recent theoretical work predicts the distribution
of relative inclinations between inner and outer orbits of hierarchical systems
to peak near 40 and 140 degrees. The degree of coplanarity of this complex
system is determined, and the angle between the planes of the A-B and Aa-Ab
orbits is found to be 136.7 +/- 8.3 degrees, near the predicted distribution
peak at 140 degrees; this result is discussed in the context of the handful of
systems with established mutual inclinations. The system distance and masses
for each component are obtained from a combined fit of the PHASES astrometry
and archival radial velocity observations. The component masses have relative
precisions of 5% (component Aa), 15% (Ab), and 1.4% (each of Ba and Bb). The
median size of the minor axes of the uncertainty ellipses for the new
measurements is 20 micro-arcseconds. Updated orbits for delta Equulei, kappa
Pegasi, and V819 Herculis are also presented.Comment: 12 Pages, Accepted for publication in A
Vacuum Alignment in Technicolor Theories-I. The Technifermion Sector
We have carried out numerical studies of vacuum alignment in technicolor
models of electroweak and flavor symmetry breaking. The goal is to understand
alignment's implications for strong and weak CP nonconservation in quark
interactions. In this first part, we restrict our attention to the
technifermion sector of simple models. We find several interesting phenomena,
including (1) the possibility that all observable phases in the technifermions'
unitary vacuum-alignment matrix are integer multiples of \pi/N' where N' \le N,
the number of technifermion doublets, and (2) the possibility of exceptionally
light pseudoGoldstone technipions.Comment: 19 pages, Latex with one postscript figur
Dynamical symmetry of isobaric analog 0+ states in medium mass nuclei
An algebraic sp(4) shell model is introduced to achieve a deeper
understanding and interpretation of the properties of pairing-governed 0+
states in medium mass atomic nuclei. The theory, which embodies the simplicity
of a dynamical symmetry approach to nuclear structure, is shown to reproduce
the excitation spectra and fine structure effects driven by proton-neutron
interactions and isovector pairing correlations across a broad range of nuclei.Comment: 7 pages, 5 figure
Doppler cooling of gallium atoms: 2. Simulation in complex multilevel systems
This paper derives a general procedure for the numerical solution of the
Lindblad equations that govern the coherences arising from multicoloured light
interacting with a multilevel system. A systematic approach to finding the
conservative and dissipative terms is derived and applied to the laser cooling
of gallium. An improved numerical method is developed to solve the
time-dependent master equation and results are presented for transient cooling
processes. The method is significantly more robust, efficient and accurate than
the standard method and can be applied to a broad range of atomic and molecular
systems. Radiation pressure forces and the formation of dynamic dark-states are
studied in the gallium isotope 66Ga.Comment: 15 pages, 8 figure
- …