7 research outputs found

    The discriminatory value of cardiorespiratory interactions in distinguishing awake from anaesthetised states: a randomised observational study

    Get PDF
    Depth of anaesthesia monitors usually analyse cerebral function with or without other physiological signals; noninvasive monitoring of the measured cardiorespiratory signals alone would offer a simple, practical alternative. We aimed to investigate whether such signals, analysed with novel, non-linear dynamic methods, would distinguish between the awake and anaesthetised states. We recorded ECG, respiration, skin temperature, pulse and skin conductivity before and during general anaesthesia in 27 subjects in good cardiovascular health, randomly allocated to receive propofol or sevoflurane. Mean values, variability and dynamic interactions were determined. Respiratory rate (p = 0.0002), skin conductivity (p = 0.03) and skin temperature (p = 0.00006) changed with sevoflurane, and skin temperature (p = 0.0005) with propofol. Pulse transit time increased by 17% with sevoflurane (p = 0.02) and 11% with propofol (p = 0.007). Sevoflurane reduced the wavelet energy of heart (p = 0.0004) and respiratory (p = 0.02) rate variability at all frequencies, whereas propofol decreased only the heart rate variability below 0.021 Hz (p < 0.05). The phase coherence was reduced by both agents at frequencies below 0.145 Hz (p < 0.05), whereas the cardiorespiratory synchronisation time was increased (p < 0.05). A classification analysis based on an optimal set of discriminatory parameters distinguished with 95% success between the awake and anaesthetised states. We suggest that these results can contribute to the design of new monitors of anaesthetic depth based on cardiovascular signals alone

    Alpha-2-adrenergic receptor agonists for the prevention of delirium and cognitive decline after open heart surgery (ALPHA2PREVENT): protocol for a multicentre randomised controlled trial

    Get PDF
    INTRODUCTION: Postoperative delirium is common in older cardiac surgery patients and associated with negative short-term and long-term outcomes. The alpha-2-adrenergic receptor agonist dexmedetomidine shows promise as prophylaxis and treatment for delirium in intensive care units (ICU) and postoperative settings. Clonidine has similar pharmacological properties and can be administered both parenterally and orally. We aim to study whether repurposing of clonidine can represent a novel treatment option for delirium, and the possible effects of dexmedetomidine and clonidine on long-term cognitive trajectories, motor activity patterns and biomarkers of neuronal injury, and whether these effects are associated with frailty status. METHODS AND ANALYSIS: This five-centre, double-blind randomised controlled trial will include 900 cardiac surgery patients aged 70+ years. Participants will be randomised 1:1:1 to dexmedetomidine or clonidine or placebo. The study drug will be given as a continuous intravenous infusion from the start of cardiopulmonary bypass, at a rate of 0.4 µg/kg/hour. The infusion rate will be decreased to 0.2 µg/kg/hour postoperatively and be continued until discharge from the ICU or 24 hours postoperatively, whichever happens first.Primary end point is the 7-day cumulative incidence of postoperative delirium (Diagnostic and Statistical Manual of Mental Disorders, fifth edition). Secondary end points include the composite end point of coma, delirium or death, in addition to delirium severity and motor activity patterns, levels of circulating biomarkers of neuronal injury, cognitive function and frailty status 1 and 6 months after surgery. ETHICS AND DISSEMINATION: This trial is approved by the Regional Committee for Ethics in Medical Research in Norway (South-East Norway) and by the Norwegian Medicines Agency. Dissemination plans include publication in peer-reviewed medical journals and presentation at scientific meetings. TRIAL REGISTRATION NUMBER: NCT05029050

    The Effects of General Anesthesia on Human Skin Microcirculation Evaluated by Wavelet Transform.

    No full text
    BACKGROUND: Time-frequency analysis of the laser Doppler flowmetry signal, using wavelet transform, shows periodic oscillations at five characteristic frequencies related to the heart (0.6–2 Hz), respiration (0.15– 0.6 Hz), myogenic activity in the vessel wall (0.052– 0.15 Hz), sympathetic activity (0.021– 0.052 Hz), and very slow oscillations (0.0095– 0.021), which can be modulated by the endothelium-dependent vasodilator acetylcholine. We hypothesized that wavelet transform of laser Doppler flowmetry signals could detect changes in the microcirculation induced by general anesthesia, such as alterations in vasomotion and sympathetic activity. METHODS: Eleven patients undergoing faciomaxillary surgery were included. Skin microcirculation was measured on the lower forearm with laser Doppler flowmetry and iontophoresis with acetylcholine and sodium nitroprusside before and during general anesthesia with propofol, fentanyl, and midazolam. The laser Doppler flowmetry signals were analyzed using wavelet transform. RESULTS: There were significant reductions in spectral amplitudes in the 0.0095–0.021 (P < 0.01), the 0.021–0.052 (P < 0.001), and the 0.052–0.15 Hz frequency interval (P < 0.01) and a significant increase in the 0.15–0.6 Hz frequency interval. General anesthesia had no effect on the difference between acetylcholine and sodium nitroprusside on relative amplitudes in the 0.0095–0.021 Hz frequency interval (P < 0.001). CONCLUSION: General anesthesia reduces the oscillatory components of the perfusion signal related to sympathetic, myogenic activity and the component modulated by the endothelium. However, the iontophoretic data did not reveal a specific effect on the endothelium. The increase in the 0.15–0.6 Hz interval is related to the effect of mechanical ventilation

    Low-frequency oscillations of the laser Doppler perfusion signal in human skin

    No full text
    Spectral analysis of the laser Doppler flow (LDF) signal in the frequency interval from 0.0095-2.0 Hz reveals blood flow oscillations with frequencies around 1.0, 0.3, 0.1, 0.04 and 0.01 Hz. The heartbeat, the respiration, the intrinsic myogenic activity of vascular smooth muscle, the neurogenic activity of the vessel wall and the vascular endothelium influence these oscillations, respectively. The first aim of this study was to investigate if a slow oscillatory component could be detected in the frequency area below 0.0095 Hz of the human cutaneous blood perfusion signal. Unstimulated basal blood skin perfusion and enhanced perfusion during iontophoresis with the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) were measured in healthy male volunteers and the wavelet transform was computed. A low-frequency oscillation between 0.005 and 0.0095 Hz was found both during basal conditions and during iontophoresis with ACh and SNP. Iontophoresis with ACh increased the normalized amplitude to a greater extent than SNP (P  =  0.001) indicating modulation by the vascular endothelium. To gain further insight into the mechanisms for this endothelium dependency, we inhibited nitric oxide (NO) synthesis with NG-monomethyl-l-arginine (l-NMMA) and prostaglandin (PG) synthesis by aspirin. l-NMMA did not affect the increased response to ACh vs. SNP iontophoresis in the 0.005-0.0095-Hz interval (P  =  0.006) but abolished the difference in the 0.0095-0.021-Hz interval (P  =  0.97). Aspirin did not affect the difference in response to ACh and SNP in either of the two frequency intervals. Thus, other endothelial mechanisms, such as endothelium-derived hyperpolarizing factor (EDHF), might be involved in the regulation of this sixth frequency interval (0.005-0.0095 Hz)

    Respiratory Variations in Pulse Pressure Reflect Central Hypovolemia during Noninvasive Positive Pressure Ventilation

    No full text
    Background. Correct volume management is essential in patients with respiratory failure. We investigated the ability of respiratory variations in noninvasive pulse pressure (ΔPP), photoplethysmographic waveform amplitude (ΔPOP), and pleth variability index (PVI) to reflect hypovolemia during noninvasive positive pressure ventilation by inducing hypovolemia with progressive lower body negative pressure (LBNP). Methods. Fourteen volunteers underwent LBNP of 0, −20, −40, −60, and −80 mmHg for 4.5 min at each level or until presyncope. The procedure was repeated with noninvasive positive pressure ventilation. We measured stroke volume (suprasternal Doppler), ΔPP (Finapres), ΔPOP, and PVI and assessed their association with LBNP-level using linear mixed model regression analyses. Results. Stroke volume decreased with each pressure level (−11.2 mL, 95% CI −11.8, −9.6, P<0.001), with an additional effect of noninvasive positive pressure ventilation (−3.0 mL, 95% CI −8.5, −1.3, P=0.009). ΔPP increased for each LBNP-level (1.2%, 95% CI 0.5, 1.8, P<0.001) and almost doubled during noninvasive positive pressure ventilation (additional increase 1.0%, 95% CI 0.1, 1.9, P=0.003). Neither ΔPOP nor PVI was significantly associated with LBNP-level. Conclusions. During noninvasive positive pressure ventilation, preload changes were reflected by ΔPP but not by ΔPOP or PVI. This implies that ΔPP may be used to assess volume status during noninvasive positive pressure ventilation
    corecore